RESUMEN
Polytomella spp. is a colorless alga of the family Chlamydomonadaceae that lacks chloroplasts and cell wall. A highly active ubiquinol-cytochrome c oxidoreductase (bc1 complex), sensitive to antimycin and myxothiazol, has been purified and characterized from this alga (Gutiérrez-Cirlos et al., 1994, J. Biol. Chem. 269, 9147-9154). Both in mitochondrial membranes and in the isolated complex, the visible spectrum of cytochrome b from Polytomella spp. exhibits an atypical alpha-band with a maximum at 567 nm. This maximum is shifted 3-4 nm to the red when compared with b-type cytochromes from other organisms. Analysis of the b hemes of the bc1 complex by high performance liquid chromatography revealed no differences in the retention time and in the absorption spectra of the b-type hemes from Polytomella spp. and hemin, indicating that the prosthetic group in this alga is protoheme and thus ruling out the possibility that the red-shift could be due to different chemical substitutions in the porphyrin rings of the bL or bH hemes. The two b hemes were characterized by electrochemical redox titration; at pH 7.8-8.0, the midpoint potential for bL was-143 mV and for bH +25 mV. The spectra of the two b-type hemes were recorded in the presence of different reductants, at selected electrochemical potentials, and in the presence of antimycin A, to distinguish between the contribution of bL and bH to the visible spectrum. Both hemes bL and bH of the algal cytochrome b contribute to the observed bathochromic absorption maximum in the alpha-band of the spectrum. The data also show that the low potential bL heme from Polytomella spp. is spectroscopically similar to that of other organisms, with two transitions in the alpha-peak at 558.7 and 568.4 nm. The high-potential heme bH also exhibits a spectrum with two transitions at 557.2 and 568.9 nm, which surprisingly differs from the spectra of cytochrome bH of mammals, plants, yeasts, and bacteria, which all exhibit a single transition centered around 560 nm.
Asunto(s)
Chlorophyta/enzimología , Grupo Citocromo b/química , Complejo III de Transporte de Electrones/química , Hemo/química , Animales , Chlamydomonas reinhardtii/enzimología , Cromatografía Líquida de Alta Presión , Espectrofotometría AtómicaRESUMEN
Ethoxyquin (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinolein, EQ) is an antioxidant used in animal foodstuffs and to prevent superficial scalding in some fruits. In renal cortical slices prepared from male rats that had consumed a diet containing EQ, EQ inhibited the specific uptake of 14C-labelled p-aminohippurate ([14C]PAH) and tetraethylammonium ([14C]TEA), markers of organic anion and cation tubular secretion, respectively. The specific uptake of [14C]TEA was five-fold more sensitive to EQ than [14C]PAH uptake (IC50 0.33 and 1.51 mM, respectively). EQ (1 mM) decreased Na+/K(+)-ATPase activity from 1.58 to 1.0 mumol inorganic phosphate/mg protein/min in renal microsomes. The activity of this enzyme provides the energy for the function of both secretory systems. These results suggest that the mechanisms by which EQ inhibits both anion and cation tubular secretion involves a decrease in the Na+/K(+)-ATPase activity. This effect leads to interference with the energy supply required for these tubular secretory mechanisms. Our results indicate that the exposure of animals or humans to high concentrations of ethoxyquin should be avoided.