RESUMEN
BACKGROUND: Understanding the impact of the burden of COVID-19 is key to successfully navigating the COVID-19 pandemic. As part of a larger investigation on COVID-19 mortality impact, this study aims to estimate the Potential Years of Life Lost (PYLL) in 17 countries and territories across the world (Australia, Brazil, Cape Verde, Colombia, Cyprus, France, Georgia, Israel, Kazakhstan, Peru, Norway, England & Wales, Scotland, Slovenia, Sweden, Ukraine, and the United States [USA]). METHODS: Age- and sex-specific COVID-19 death numbers from primary national sources were collected by an international research consortium. The study period was established based on the availability of data from the inception of the pandemic to the end of August 2020. The PYLL for each country were computed using 80 years as the maximum life expectancy. RESULTS: As of August 2020, 442,677 (range: 18-185,083) deaths attributed to COVID-19 were recorded in 17 countries which translated to 4,210,654 (range: 112-1,554,225) PYLL. The average PYLL per death was 8.7 years, with substantial variation ranging from 2.7 years in Australia to 19.3 PYLL in Ukraine. North and South American countries as well as England & Wales, Scotland and Sweden experienced the highest PYLL per 100,000 population; whereas Australia, Slovenia and Georgia experienced the lowest. Overall, males experienced higher PYLL rate and higher PYLL per death than females. In most countries, most of the PYLL were observed for people aged over 60 or 65 years, irrespective of sex. Yet, Brazil, Cape Verde, Colombia, Israel, Peru, Scotland, Ukraine, and the USA concentrated most PYLL in younger age groups. CONCLUSIONS: Our results highlight the role of PYLL as a tool to understand the impact of COVID-19 on demographic groups within and across countries, guiding preventive measures to protect these groups under the ongoing pandemic. Continuous monitoring of PYLL is therefore needed to better understand the burden of COVID-19 in terms of premature mortality.
Asunto(s)
COVID-19 , Anciano , Brasil , Femenino , Humanos , Esperanza de Vida , Masculino , Mortalidad , Mortalidad Prematura , Pandemias , SARS-CoV-2 , Estados UnidosRESUMEN
BACKGROUND: Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS: Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS: A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS: Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.
Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , África Occidental/epidemiología , Animales , Genes de Insecto , Insecticidas/efectos adversos , Malaria/transmisión , Mosquitos Vectores/genética , MutaciónRESUMEN
BACKGROUND: Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS: Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS: From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION: This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.
Asunto(s)
Anopheles/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Piretrinas/farmacología , Alelos , Animales , Anopheles/efectos de los fármacos , Cabo Verde , Proteínas de Insectos/metabolismo , Malaria , Mosquitos Vectores/efectos de los fármacos , Reacción en Cadena de la PolimerasaRESUMEN
BACKGROUND: Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. METHODS: Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. RESULTS: High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. CONCLUSION: Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector capacity of A. aegypti and suggests the presence of a mechanism modulating virus replication in the SG.