RESUMEN
Gene editing in large animal models for future applications in translational medicine and food production must be deeply investigated for an increase of knowledge. The mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters. This gene maintains mtDNA, and it is essential for the initiation of mtDNA transcription. Lately, we generated a new cell line through the disruption of the TFAM gene in bovine fibroblast cells by CRISPR/Cas 9 technology. We showed that the CRISPR/Cas9 design was efficient through the generation of heterozygous mutant clones. In this context, once this gene regulates the mtDNA replication specificity, the study aimed to determine if the post-edited cells are capable of in vitro maintenance and assess if they present changes in mtDNA copies and mitochondrial membrane potential after successive passages in culture. The post-edited cells were expanded in culture, and we performed a growth curve, doubling time, cell viability, mitochondrial DNA copy number, and mitochondrial membrane potential assays. The editing process did not make cell culture unfeasible, even though cell growth rate and viability were decreased compared to control since we observed the cells grow well when cultured in a medium supplemented with uridine and pyruvate. They also exhibited a classical fibroblastoid appearance. The RT-qPCR to determine the mtDNA copy number showed a decrease in the edited clones compared to the non-edited ones (control) in different cell passages. Cell staining with Mitotracker Green and red suggests a reduction in red fluorescence in the edited cells compared to the non-edited cells. Thus, through characterization, we demonstrated that the TFAM gene is critical to mitochondrial maintenance due to its interference in the stability of the mitochondrial DNA copy number in different cell passages and membrane potential confirming the decrease in mitochondrial activity in cells edited in heterozygosis.
Asunto(s)
Sistemas CRISPR-Cas , Bovinos/genética , Proteínas de Unión al ADN/genética , Edición Génica , Proteínas Mitocondriales/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Replicación del ADN , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Dosificación de Gen , Mitocondrias/genéticaRESUMEN
The mitochondrial transcription factor A (TFAM) is a mitochondrial DNA (mtDNA) binding protein essential for the initiation of transcription and genome maintenance. Recently it was demonstrated that the primary role of TFAM is to maintain the integrity of mtDNA and that it is a key regulator of mtDNA copy number. It was also shown that TFAM plays a central role in the mtDNA stress-mediated inflammatory response. In our study, we proposed to evaluate the possibility of editing the TFAM gene by CRISPR/Cas9 technology in bovine fibroblasts, as TFAM regulates the replication specificity of mtDNA. We further attempted to maintain these cells in culture post edition in a medium supplemented with uridine and pyruvate to mimic Rho zero cells that are capable of surviving without mtDNA, because it is known that the TFAM gene is lethal in knockout mice and chicken. Moreover, we evaluated the effects of TFAM modification on mtDNA copy number. The CRISPR gRNA was designed to target exon 1 of the bovine TFAM gene and subsequently cloned. Fibroblasts were transfected with Cas9 and control plasmids. After 24 h of transfection, cells were analyzed by flow cytometry to evaluate the efficiency of transfection. The site directed-mutation frequency was assessed by T7 endonuclease assay, and cell clones were analyzed for mtDNA copy number by Sanger DNA sequencing. We achieved transfection efficiency of 51.3%. We selected 23 successfully transformed clones for further analysis, and seven of these exhibited directed mutations at the CRISPR/Cas9 targeted site. Moreover, we also found a decrease in mtDNA copy number in the gene edited clones compared to that in the controls. These TFAM gene mutant cells were viable in culture when supplemented with uridine and pyruvate. We conclude that this CRISPR/Cas9 design was efficient, resulting in seven heterozygous mutant clones and opening up the possibility to use these mutant cell lines as a model system to elucidate the role of TFAM in the maintenance of mtDNA integrity.