Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539926

RESUMEN

The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional "bipartite-like" nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Mitomicina/farmacología , Recombinasa Rad51/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de Mantenimiento de Minicromosoma/análisis , Recombinasa Rad51/análisis
2.
J Biol Chem ; 292(46): 19001-19012, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28939774

RESUMEN

Replicative hexameric helicases are thought to unwind duplex DNA by steric exclusion (SE) where one DNA strand is encircled by the hexamer and the other is excluded from the central channel. However, interactions with the excluded strand on the exterior surface of hexameric helicases have also been shown to be important for DNA unwinding, giving rise to the steric exclusion and wrapping (SEW) model. For example, the archaeal Sulfolobus solfataricus minichromosome maintenance (SsoMCM) helicase has been shown to unwind DNA via a SEW mode to enhance unwinding efficiency. Using single-molecule FRET, we now show that the analogous Escherichia coli (Ec) DnaB helicase also interacts specifically with the excluded DNA strand during unwinding. Mutation of several conserved and positively charged residues on the exterior surface of EcDnaB resulted in increased interaction dynamics and states compared with wild type. Surprisingly, these mutations also increased the DNA unwinding rate, suggesting that electrostatic contacts with the excluded strand act as a regulator for unwinding activity. In support of this, experiments neutralizing the charge of the excluded strand with a morpholino substrate instead of DNA also dramatically increased the unwinding rate. Of note, although the stability of the excluded strand was nearly identical for EcDnaB and SsoMCM, these enzymes are from different superfamilies and unwind DNA with opposite polarities. These results support the SEW model of unwinding for EcDnaB that expands on the existing SE model of hexameric helicase unwinding to include contributions from the excluded strand to regulate the DNA unwinding rate.


Asunto(s)
ADN Bacteriano/metabolismo , AdnB Helicasas/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , ADN Bacteriano/química , AdnB Helicasas/química , Escherichia coli/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Alineación de Secuencia , Electricidad Estática
3.
Proc Natl Acad Sci U S A ; 112(14): 4286-91, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831490

RESUMEN

RecQ helicases are a widely conserved family of ATP-dependent motors with diverse roles in nearly every aspect of bacterial and eukaryotic genome maintenance. However, the physical mechanisms by which RecQ helicases recognize and process specific DNA replication and repair intermediates are largely unknown. Here, we solved crystal structures of the human RECQ1 helicase in complexes with tailed-duplex DNA and ssDNA. The structures map the interactions of the ssDNA tail and the branch point along the helicase and Zn-binding domains, which, together with reported structures of other helicases, define the catalytic stages of helicase action. We also identify a strand-separating pin, which (uniquely in RECQ1) is buttressed by the protein dimer interface. A duplex DNA-binding surface on the C-terminal domain is shown to play a role in DNA unwinding, strand annealing, and Holliday junction (HJ) branch migration. We have combined EM and analytical ultracentrifugation approaches to show that RECQ1 can form what appears to be a flat, homotetrameric complex and propose that RECQ1 tetramers are involved in HJ recognition. This tetrameric arrangement suggests a platform for coordinated activity at the advancing and receding duplexes of an HJ during branch migration.


Asunto(s)
ADN Helicasas/química , ADN/química , RecQ Helicasas/química , Animales , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , ADN Cruciforme/fisiología , ADN de Cadena Simple/química , Escherichia coli/metabolismo , Humanos , Insectos , Conformación Molecular , Desnaturalización de Ácido Nucleico , Nucleótidos/química , Unión Proteica , Estructura Terciaria de Proteína , Zinc/química
4.
J Cell Biol ; 208(5): 545-62, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25733713

RESUMEN

Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease and WRN ATPase activities functionally interact to degrade reversed replication forks with a 5'-to-3' polarity and promote replication restart, thus preventing aberrant processing of unresolved replication intermediates. Unexpectedly, EXO1, MRE11, and CtIP are not involved in the same mechanism of reversed fork processing, whereas human RECQ1 limits DNA2 activity by preventing extensive nascent strand degradation. RAD51 depletion antagonizes this mechanism, presumably by preventing reversed fork formation. These studies define a new mechanism for maintaining genome integrity tightly controlled by specific nucleolytic activities and central homologous recombination factors.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Helicasa del Síndrome de Werner
5.
Nat Struct Mol Biol ; 20(3): 347-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23396353

RESUMEN

Topoisomerase I (TOP1) inhibitors are an important class of anticancer drugs. The cytotoxicity of TOP1 inhibitors can be modulated by replication fork reversal through a process that requires poly(ADP-ribose) polymerase (PARP) activity. Whether regressed forks can efficiently restart and what factors are required to restart fork progression after fork reversal are still unknown. We have combined biochemical and EM approaches with single-molecule DNA fiber analysis to identify a key role for human RECQ1 helicase in replication fork restart after TOP1 inhibition that is not shared by other human RecQ proteins. We show that the poly(ADP-ribosyl)ation activity of PARP1 stabilizes forks in the regressed state by limiting their restart by RECQ1. These studies provide new mechanistic insights into the roles of RECQ1 and PARP in DNA replication and offer molecular perspectives to potentiate chemotherapeutic regimens based on TOP1 inhibition.


Asunto(s)
Replicación del ADN , RecQ Helicasas/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Camptotecina/farmacología , Línea Celular , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , RecQ Helicasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA