Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5027, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424157

RESUMEN

This research utilized the outputs from three models of the Coupled Model Intercomparison Project Phase 6 (CMIP6), specifically CanESM5, GFDL-ESM4, and IPSL-CM6A-LR. These models were used under the SSP1-2.6 and SSP5-8.5 scenarios, along with the SPI and SPEI, to assess the impacts of climate change on drought in Iran. The results indicated that the average annual precipitation will increase under some scenarios and decrease under others in the near future (2022-2050). In the distant future (2051-2100), the average annual precipitation will increase in all states by 8-115 mm. The average minimum and maximum temperature will increase by up to 4.85 â„ƒ and 4.9 â„ƒ, respectively in all states except for G2S1. The results suggest that severe droughts are anticipated across Iran, with Cluster 5 expected to experience the longest and most severe drought, lasting 6 years with a severity index of 85 according to the SPI index. Climate change is projected to amplify drought severity, particularly in central and eastern Iran. The SPEI analysis confirms that drought conditions will worsen in the future, with southeastern Iran projected to face the most severe drought lasting 20 years. Climate change is expected to extend drought durations and increase severity, posing significant challenges to water management in Iran.

2.
Sci Rep ; 14(1): 1535, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233414

RESUMEN

Soil temperature is a key meteorological parameter that plays an important role in determining rates of physical, chemical and biological reactions in the soil. Ground temperature can vary substantially under different land cover types and climatic conditions. Proper prediction of soil temperature is thus essential for the accurate simulation of land surface processes. In this study, two intelligent neural models-artificial neural networks (ANNs) and Sperm Swarm Optimization (SSO) were used for estimating of soil temperatures at four depths (5, 10, 20, 50 cm) using seven-year meteorological data acquired from Archbold Biological Station in South Florida. The results of this study in subtropical grazinglands of Florida showed that the integrated artificial neural network and SSO models (MLP-SSO) were more accurate tools than the original structure of artificial neural network methods for soil temperature forecasting. In conclusion, this study recommends the hybrid MLP-SSO model as a suitable tool for soil temperature prediction at different soil depths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA