Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 242, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285487

RESUMEN

Clustering is widely used for single-cell analysis, but current methods are limited in accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method that outperforms other methods at hard clustering without the need for hyperparameter tuning. It also performs soft clustering to characterize continuum-like regions and quantify clustering uncertainty, demonstrated here by mapping the connectivity and intermediate transitions between MNIST handwritten digits and between hypothalamic tanycyte subpopulations. This hyperparameter-randomized ensemble approach improves the accuracy, robustness, ease of use, and interpretability of single-cell clustering, and may prove useful in other fields as well.


Asunto(s)
Análisis de la Célula Individual , Análisis por Conglomerados , Humanos , Análisis de la Célula Individual/métodos , Algoritmos
2.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187667

RESUMEN

Clustering analysis is widely used to group objects by similarity, but for complex datasets such as those produced by single-cell analysis, the currently available clustering methods are limited by accuracy, robustness, ease of use, and interpretability. To address these limitations, we developed an ensemble clustering method with hyperparameter randomization that outperforms other methods across a broad range of single-cell and synthetic datasets, without the need for manual hyperparameter selection. In addition to hard cluster labels, it also outputs soft cluster memberships to characterize continuum-like regions and per cell overlap scores to quantify the uncertainty in cluster assignment. We demonstrate the improved clustering interpretability from these features by tracing the intermediate stages between handwritten digits in the MNIST dataset, and between tanycyte subpopulations in the hypothalamus. This approach improves the quality of clustering and subsequent downstream analyses for single-cell datasets, and may also prove useful in other fields of data analysis.

3.
Nat Neurosci ; 25(11): 1543-1558, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303068

RESUMEN

Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein-mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.


Asunto(s)
Ganglios Espinales , Neuronas , Masculino , Femenino , Ratones , Animales , Ganglios Espinales/fisiología , Neuronas/fisiología , Neuroglía , Diferenciación Celular , ARN Mensajero/genética
4.
Nat Protoc ; 15(2): 398-420, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31932774

RESUMEN

High-dimensional single-cell technologies present new opportunities for biological discovery, but the complex nature of the resulting datasets makes it challenging to perform comprehensive analysis. One particular challenge is the analysis of single-cell time course datasets: how to identify unique cell populations and track how they change across time points. To facilitate this analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based commands. This approach can be applied to many dynamic processes, including in vitro stem cell differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP analysis of a previously published scRNAseq dataset. Using both synthetic and experimental datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The protocol takes between 30 min and 1.5 h to complete.


Asunto(s)
Algoritmos , Gráficos por Computador , Análisis de la Célula Individual/métodos , Interfaz Usuario-Computador , Programas Informáticos
5.
Nat Commun ; 9(1): 5380, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568279

RESUMEN

Genome-wide epigenomic maps have revealed millions of putative enhancers and promoters, but experimental validation of their function and high-resolution dissection of their driver nucleotides remain limited. Here, we present HiDRA (High-resolution Dissection of Regulatory Activity), a combined experimental and computational method for high-resolution genome-wide testing and dissection of putative regulatory regions. We test ~7 million accessible DNA fragments in a single experiment, by coupling accessible chromatin extraction with self-transcribing episomal reporters (ATAC-STARR-seq). By design, fragments are highly overlapping in densely-sampled accessible regions, enabling us to pinpoint driver regulatory nucleotides by exploiting differences in activity between partially-overlapping fragments using a machine learning model (SHARPR-RE). In GM12878 lymphoblastoid cells, we find ~65,000 regions showing enhancer function, and pinpoint ~13,000 high-resolution driver elements. These are enriched for regulatory motifs, evolutionarily-conserved nucleotides, and disease-associated genetic variants from genome-wide association studies. Overall, HiDRA provides a high-throughput, high-resolution approach for dissecting regulatory regions and driver nucleotides.


Asunto(s)
Regulación de la Expresión Génica , Técnicas Genéticas , Genoma Humano , Secuencias Reguladoras de Ácidos Nucleicos , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA