Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 28(10): 4857-4869, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31056495

RESUMEN

Three-dimensional structure-based localization aims to estimate the six-DOF camera pose of a query image by means of feature matches against a 3D Structure-from-Motion (SfM) point cloud. For city-scale SfM point clouds with tens of millions of points, it becomes more and more difficult to disambiguate matches. Therefore, a 3D structure-based localization method, which can efficiently handle matches with very large outlier ratios, is needed. We propose a two-stage outlier filtering framework for city-scale localization that leverages both visibility and geometry intrinsics of the SfM point clouds. First, we propose a visibility-based outlier filter, which is based on a bipartite visibility graph, to filter outliers on a coarse level. Second, we apply a geometry-based outlier filter to generate a set of fine-grained matches with a novel data-driven geometrical constraint for efficient inlier evaluation. The proposed two-stage outlier filtering framework only relies on the intrinsic information of the SfM point cloud. It is thus widely applicable to be embedded into the existing localization approaches. The experimental results on two real-world datasets demonstrate the effectiveness of the proposed two-stage outlier filtering framework for city-scale localization.

2.
BMC Bioinformatics ; 18(1): 293, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28583067

RESUMEN

BACKGROUND: Detecting homologous protein sequences and computing multiple sequence alignments (MSA) are fundamental tasks in molecular bioinformatics. These tasks usually require a substitution matrix for modeling evolutionary substitution events derived from a set of aligned sequences. Over the last years, the known sequence space increased drastically and several publications demonstrated that this can lead to significantly better performing matrices. Interestingly, matrices based on dated sequence datasets are still the de facto standard for both tasks even though their data basis may limit their capabilities. We address these aspects by presenting a new substitution matrix series called PFASUM. These matrices are derived from Pfam seed MSAs using a novel algorithm and thus build upon expert ground truth data covering a large and diverse sequence space. RESULTS: We show results for two use cases: First, we tested the homology search performance of PFASUM matrices on up-to-date ASTRAL databases with varying sequence similarity. Our study shows that the usage of PFASUM matrices can lead to significantly better homology search results when compared to conventional matrices. PFASUM matrices with comparable relative entropies to the commonly used substitution matrices BLOSUM50, BLOSUM62, PAM250, VTML160 and VTML200 outperformed their corresponding counterparts in 93% of all test cases. A general assessment also comparing matrices with different relative entropies showed that PFASUM matrices delivered the best homology search performance in the test set. Second, our results demonstrate that the usage of PFASUM matrices for MSA construction improves their quality when compared to conventional matrices. On up-to-date MSA benchmarks, at least 60% of all MSAs were reconstructed in an equal or higher quality when using MUSCLE with PFASUM31, PFASUM43 and PFASUM60 matrices instead of conventional matrices. This rate even increases to at least 76% for MSAs containing similar sequences. CONCLUSIONS: We present the novel PFASUM substitution matrices derived from manually curated MSA ground truth data covering the currently known sequence space. Our results imply that PFASUM matrices improve homology search performance as well as MSA quality in many cases when compared to conventional substitution matrices. Hence, we encourage the usage of PFASUM matrices and especially PFASUM60 for these specific tasks.


Asunto(s)
Algoritmos , Proteínas/química , Alineación de Secuencia , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Bases de Datos de Proteínas , Entropía , Homología de Secuencia de Aminoácido
3.
IEEE Comput Graph Appl ; 37(6): 76-87, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28113837

RESUMEN

We introduce deferred warping, a novel approach for real-time deformation of 3D objects attached to an animated or manipulated surface. Our target application is virtual prototyping of garments where 2D pattern modeling is combined with 3D garment simulation which allows an immediate validation of the design. The technique works in two steps: First, the surface deformation of the target object is determined and the resulting transformation field is stored as a matrix texture. Then the matrix texture is used as look-up table to transform a given geometry onto a deformed surface. Splitting the process in two steps yields a large flexibility since different attachment types can be realized by simply defining specific mapping functions. Our technique can directly handle complex topology changes within the surface. We demonstrate a fast implementation in the vertex shading stage allowing the use of highly decorated surfaces with millions of triangles in real-time.

4.
IEEE Trans Image Process ; 26(1): 262-275, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27831876

RESUMEN

City-scale 3D point clouds reconstructed via structure-from-motion from a large collection of Internet images are widely used in the image-based localization task to estimate a 6-DOF camera pose of a query image. Due to prohibitive memory footprint of city-scale point clouds, image-based localization is difficult to be implemented on devices with limited memory resources. Point cloud simplification aims to select a subset of points to achieve a comparable localization performance using the original point cloud. In this paper, we propose a data-driven point cloud simplification framework by taking it as a weighted K-Cover problem, which mainly includes two complementary parts. First, a utility-based parameter determination method is proposed to select a reasonable parameter K for K-Cover-based approaches by evaluating the potential of a point cloud for establishing sufficient 2D-3D feature correspondences. Second, we formulate the 3D point cloud simplification problem as a weighted K-Cover problem, and propose an adaptive exponential weight function based on the visibility probability of 3D points. The experimental results on three popular datasets demonstrate that the proposed point cloud simplification framework outperforms the state-of-the-art methods for the image-based localization application with a well predicted parameter in the K-Cover problem.

5.
BMC Bioinformatics ; 17: 189, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122148

RESUMEN

BACKGROUND: BLOSUM matrices belong to the most commonly used substitution matrix series for protein homology search and sequence alignments since their publication in 1992. In 2008, Styczynski et al. discovered miscalculations in the clustering step of the matrix computation. Still, the RBLOSUM64 matrix based on the corrected BLOSUM code was reported to perform worse at a statistically significant level than the BLOSUM62. Here, we present a further correction of the (R)BLOSUM code and provide a thorough performance analysis of BLOSUM-, RBLOSUM- and the newly derived CorBLOSUM-type matrices. Thereby, we assess homology search performance of these matrix-types derived from three different BLOCKS databases on all versions of the ASTRAL20, ASTRAL40 and ASTRAL70 subsets resulting in 51 different benchmarks in total. Our analysis is focused on two of the most popular BLOSUM matrices - BLOSUM50 and BLOSUM62. RESULTS: Our study shows that fixing small errors in the BLOSUM code results in substantially different substitution matrices with a beneficial influence on homology search performance when compared to the original matrices. The CorBLOSUM matrices introduced here performed at least as good as their BLOSUM counterparts in ∼75 % of all test cases. On up-to-date ASTRAL databases BLOSUM matrices were even outperformed by CorBLOSUM matrices in more than 86 % of the times. In contrast to the study by Styczynski et al., the tested RBLOSUM matrices also outperformed the corresponding BLOSUM matrices in most of the cases. Comparing the CorBLOSUM with the RBLOSUM matrices revealed no general performance advantages for either on older ASTRAL releases. On up-to-date ASTRAL databases however CorBLOSUM matrices performed better than their RBLOSUM counterparts in ∼74 % of the test cases. CONCLUSIONS: Our results imply that CorBLOSUM type matrices outperform the BLOSUM matrices on a statistically significant level in most of the cases, especially on up-to-date databases such as ASTRAL ≥2.01. Additionally, CorBLOSUM matrices are closer to those originally intended by Henikoff and Henikoff on a conceptual level. Hence, we encourage the usage of CorBLOSUM over (R)BLOSUM matrices for the task of homology search.


Asunto(s)
Alineación de Secuencia/métodos , Algoritmos , Bases de Datos de Proteínas , Homología de Secuencia de Aminoácido
6.
IEEE Comput Graph Appl ; 34(2): 48-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24808199

RESUMEN

Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.


Asunto(s)
Biología Computacional/métodos , Gráficos por Computador , Filogenia , Alineación de Secuencia/métodos , Algoritmos , Análisis por Conglomerados , Bases de Datos Genéticas , Evolución Molecular , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA