Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anticancer Agents Med Chem ; 23(9): 981-988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36655529

RESUMEN

CYP1B1 plays an essential role in cancer's pathogenesis since it activates procarcinogens. Significantly, this enzyme catalyzes the hydroxylation of 17ß-estradiol, leading to carcinogenic metabolites involved in carcinogenesis and cancer progression. Therefore, the inhibition of CYP1B1 activity is considered a therapeutic target for chemotherapy. In addition, CYP1B1 is overexpressed in hormone-dependent cancer cells and could be related to resistance to anticancer drugs. However, the activity of CYP1B1 in the tumor microenvironment can metabolize and activate prodrugs in cancer cells, providing more selectivity and being useful for chemoprevention or chemotherapy strategies. Furthermore, due to its importance in anticancer drug design, recent studies have reported using computational methods to understand the intermolecular interactions between possible ligands and CYP1B1. Therefore, in this perspective, we highlight recent findings in developing CYP1B1 inhibitors (flavonoids, trans-stilbenes, estradiol derivatives, and carbazoles) and CYP1B1-activated prodrugs (a chalcone DMU-135 and an oxime DMAKO-20). Finally, we have analyzed their possible molecular interactions with this enzymatic target by molecular docking, which can help to design new active substances.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Humanos , Citocromo P-450 CYP1A1/metabolismo , Simulación del Acoplamiento Molecular , Profármacos/farmacología , Citocromo P-450 CYP1B1 , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Carcinogénesis , Descubrimiento de Drogas , Estradiol , Microambiente Tumoral
2.
J Biomol Struct Dyn ; 41(18): 8978-8991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36326347

RESUMEN

COVID-19, a disease caused by SARS-CoV-2, was declared a pandemic in 2020 and created a global crisis in health systems, with more than 545 million confirmed cases and 6.33 million deaths. In this sense, this work aims to identify possible inhibitors of the SARS-CoV-2 RdRp enzyme using in silico approaches. RdRp is a crucial enzyme in the replication and assembly cycle of new viral particles and a critical pharmacological target in the treatment of COVID-19. We performed a virtual screening based on molecular docking from our in-house chemical library, which contains a diversity of 313 structures from different chemical classes. Nine compounds were selected since they showed important interactions with the active site from RdRp. Next, the ADME-Tox in silico predictions served as a filter and selected the three most promising compounds: a coumarin LMed-052, a hydantoin LMed-087, and a guanidine LMed-250. Molecular dynamics simulations revealed details such as changes in the positions of ligands and catalytic residues during the simulations compared to the complex from molecular docking studies. Binding free energy analysis was performed using the MMGBSA method, demonstrating that LMed-052 and LMed-087 have better affinities for the RdRp by energetic contributions to the stability of the complexes when compared to LMed-250. Furthermore, LMed-052 showed significant in vitro inhibition against MHV-3, decreasing 99% of viral titers. Finally, these findings are useful to guide structural modifications aiming to improve the potential of these compounds to act as inhibitors of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA