Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 279(Pt 4): 135364, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245120

RESUMEN

An ion exchange nanofiber membrane (AEA-COOH) was developed from polyacrylonitrile (PAN) nanofibers through chemical hydrolysis. It was further modified by grafting chitosan (CS) onto its surface, creating the AEA-COOH-CS membrane. Then, both membranes were covalently immobilized with imidazolidinyl urea (IU), resulting in AEA-COOH-IU and AEA-COOH-CS-IU membranes. This study analyzed their physical properties, antibacterial efficacy (AE), and reusability. Optimal conditions were identified: 50 kDa molecular weight of chitosan, pH 8 for IU modification, and 0.05 % IU concentration. The AEA-COOH-IU membrane achieved 96.15 % AE against Escherichia coli at an initial concentration of 2.0 × 107 CFU/mL, while the AEA-COOH-CS-IU membrane achieved 100 % AE. The AEA-COOH-CS-IU membrane maintained 95.04 % efficacy over 5 cycles, demonstrating superior durability. As a result, the AEA-COOH-CS-IU membrane has high potential for environmental applications such as water purification and wastewater treatment. Its robust antibacterial properties and reusability suggest a significant impact on ensuring cleaner water resources and prospective uses in the biomedical field, including medical device coatings and healthcare applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA