Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 11(9)2019 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-31480472

RESUMEN

Licensure of a vaccine to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires use of the U.S. Food and Drug Administration (FDA) Animal Rule to assess vaccine efficacy as human studies are not feasible or ethical. An approach to selecting VEEV challenge strains for use under the Animal Rule was developed, taking into account Department of Defense (DOD) vaccine requirements, FDA Animal Rule guidelines, strain availability, and lessons learned from the generation of filovirus challenge agents within the Filovirus Animal Nonclinical Group (FANG). Initial down-selection to VEEV IAB and IC epizootic varieties was based on the DOD objective for vaccine protection in a bioterrorism event. The subsequent down-selection of VEEV IAB and IC isolates was based on isolate availability, origin, virulence, culture and animal passage history, known disease progression in animal models, relevancy to human disease, and ability to generate sufficient challenge material. Methods for the propagation of viral stocks (use of uncloned (wild-type), plaque-cloned, versus cDNA-cloned virus) to minimize variability in the potency of the resulting challenge materials were also reviewed. The presented processes for VEEV strain selection and the propagation of viral stocks may serve as a template for animal model development product testing under the Animal Rule to other viral vaccine programs. This manuscript is based on the culmination of work presented at the "Alphavirus Workshop" organized and hosted by the Joint Vaccine Acquisition Program (JVAP) on 15 December 2014 at Fort Detrick, Maryland, USA.


Asunto(s)
Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Vacunas Virales/uso terapéutico , Animales , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Guías como Asunto , Humanos , Programas de Inmunización/métodos , Programas de Inmunización/normas , Virología/métodos
2.
Comp Med ; 68(5): 380-395, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282570

RESUMEN

Licensure of medical countermeasure vaccines to protect against aerosolized Venezuelan equine encephalitis virus (VEEV) requires the use of the Animal Rule to assess vaccine efficacy, because human studies are not feasible or ethical. We therefore performed a retrospective study of VEE cases that occurred in at-risk laboratory workers and support personnel during the United States Biowarfare Program (1943-1969) to better define percutaneous- and aerosol-acquired VEE in humans and to compare these results with those described for the NHP model (in which high-dose aerosol VEEV challenge led to more severe encephalitis than parenteral challenge). Record review and analysis of 17 aerosol- and 23 percutaneous-acquired human cases of VEE included incubation period, symptoms, physical examination findings, and markers of infection. Human VEE disease by both exposure routes presented as acute febrile illness, typically with fever, chills, headache, back pain, malaise, myalgia, anorexia, and nausea. Aerosol exposure more commonly led to upper respiratory tract-associated findings of sore throat (59% compared with 26%), pharyngeal erythema (76% compared with 52%), neck pain (29% compared with 4%), and cervical lymphadenopathy (29% compared with 4%). Other disease manifestations, including encephalitis, were similar between the 2 exposure groups. The increase in upper respiratory tract findings in aerosol-acquired VEE in humans has not previously been reported but is supported by the mouse model, which showed nasal mucosal necrosis, necrotizing rhinitis, and an increase in upper respiratory tract viral burden associated with aerosol VEEV challenge. Fever, viremia, and lymphopenia were common markers of VEE disease in both humans and NHP, regardless of the exposure route. Taken collectively, our findings provide support for use of the nonlethal NHP model for advanced development of medical countermeasures against aerosol- or percutaneous-acquired VEE.


Asunto(s)
Encefalomielitis Equina Venezolana/prevención & control , Primates/virología , Vacunas Virales/uso terapéutico , Aerosoles , Animales , Anticuerpos Antivirales/sangre , Armas Biológicas , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/transmisión , Humanos , Periodo de Incubación de Enfermedades Infecciosas , Pruebas de Neutralización , Primates/inmunología , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA