Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39149272

RESUMEN

Doxorubicin (DXR) is a widely used chemotherapy drug that can induce severe intestinal mucositis. While the influence of gut bacteria on DXR-induced damage has been documented, the role of eukaryotic commensals remains unexplored. We discovered Tritrichomonas muris (Tmu) in one of our mouse colonies exhibiting abnormal tuft cell hyperplasia, prompting an investigation into its impact on DXR-induced intestinal injury. Mice from Tmu-colonized and Tmu-excluded facilities were injected with DXR, and tissue morphology and gene expression were evaluated at acute injury (6 h) and peak regeneration (120 h) phases. Contrary to previous reports, DXR did not significantly alter villus height, crypt depth, or crypt density in any mice. However, we did observe apoptosis, measured by cleaved caspase 3 (CC3) staining, in intestinal crypts at 6 h post-DXR that was significantly higher in mice colonized by Tmu. Interestingly, while DXR did not alter the expression of active and facultative intestinal stem cell (ISC) marker genes in control mice, it significantly reduced their expression in Tmu + mice. Tmu, but not DXR, is also associated with increased inflammation and expression of the type 2 cytokines IL-5 and IL-13. However, pre-treatment of intestinal organoids with these cytokines is not sufficient to drive elevated DXR-induced apoptosis. These findings highlight the significant influence of commensal microbiota, particularly eukaryotic organisms like Tmu, on intestinal biology and response to chemotherapy, underscoring the complexity of gut microbiota interactions in drug-induced mucositis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA