Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 111: 108057, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34847519

RESUMEN

Rapamycin (or sirolimus) is a macrolide that has shown to be useful as an immunosuppressant and that was studied in metabolic, neurological, or genetic disorders. Rapamycin is a specific natural inhibitor of the mechanistic target of rapamycin (mTOR) that is a kinase protein playing a pivotal role in cell growth and proliferation by activation of several metabolic processes. This work aimed to evaluate the utility of several compounds obtained from rapamycin and its semi-synthetic analogs everolimus and temsirolimus as possible radiopharmaceuticals oriented to this protein. Density Functional Theory calculations of these molecules were made and further analysis of the dual descriptor, charges populations, and of the electrostatic potential surfaces were performed. Molecular docking simulations were used to evaluate the interactions of the rapamycin with the studied candidates. They allowed us to propose two strategies for the synthesis of novel compounds based on electrophilic reactions. Molecular docking results also helped us to eliminate molecules that did not interact correctly with the target. Finally, we found for the first time, that the novel compounds synthesized through the electrophilic addition reaction that employed 18F-selectfluor, should maintain the biological activity of original compounds and could be suitable as Positron Emission Tomography radiopharmaceuticals targeting mTOR Complex1 system.


Asunto(s)
Radiofármacos , Serina-Treonina Quinasas TOR , Inhibidores mTOR , Simulación del Acoplamiento Molecular , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA