RESUMEN
The skin is the largest human organ and is responsible for many important functions, such as temperature regulation, water transport, and protection from external insults. It is colonized by several microorganisms that interact with each other and with the host, shaping the microbial structure and community dynamics. Through these interactions, the skin microbiota can inhibit pathogens through several mechanisms such as the production of bacteriocins, proteases, phenol soluble modulins (PSMs), and fermentation. Furthermore, these commensals can produce molecules with antivirulence activity, reducing the potential of these pathogens to adhere to and invade human tissues. Microorganisms of the skin microbiota are also able to sense molecules from the environment and shape their behavior in response to these signals through the modulation of gene expression. Additionally, microbiota-derived compounds can affect pathogen gene expression, including the expression of virulence determinants. Although most studies related to microbial interactions in the skin have been directed towards elucidating competition mechanisms, microorganisms can also use the products of other species to their benefit. In this review, we will discuss several mechanisms through which microorganisms interact in the skin and the biotechnological applications of products originating from the skin microbiota that have already been reported in the literature.
RESUMEN
Staphylococcus spp. and Cutibacterium acnes are members of the skin microbiome but can also act as pathogens. Particularly, Staphylococcus species are known to cause medical devices-associated infections, and biofilm production is one of their main virulence factors. Biofilms allow bacteria to adhere and persist on surfaces, protecting them from antimicrobials and host defenses. Since both bacteria are found in the human skin, potentially competing for niches, we aimed to investigate if C. acnes produces molecules that affect Staphylococcus spp. biofilm formation and dispersal. Thus, we evaluated the impact of C. acnes cell-free conditioned media (CFCM) on S. aureus, S. epidermidis, S. hominis, and S. lugdunensis biofilm formation. S. lugdunensis and S. hominis biofilm formation was significantly reduced with C. acnes CFCM without impact on their planktonic growth. C. acnes CFCM also significantly disrupted S. hominis established biofilms. The active molecules against S. lugdunensis and S. hominis biofilms appeared to be distinct since initial characterization points to different sizes and sensitivity to sodium metaperiodate, although the activity is highly resistant to heat in both cases. Mass spectrometry analysis of the fractions active against S. hominis revealed several potential candidates. Investigating how species present in the same environment interact, affecting the dynamics of biofilm formation, may reveal clinically useful compounds as well as molecular aspects of interspecies interactions.
Asunto(s)
Antibiosis , Medios de Cultivo Condicionados , Propionibacteriaceae , Staphylococcus , Antibiosis/fisiología , Biopelículas , Medios de Cultivo Condicionados/farmacología , Humanos , Propionibacteriaceae/química , Staphylococcus/efectos de los fármacos , Staphylococcus aureus , Staphylococcus epidermidisRESUMEN
The microbiota influences host health through several mechanisms, including protecting it from pathogen colonization. Staphylococcus epidermidis is one of the most frequently found species in the skin microbiota, and its presence can limit the development of pathogens such as Staphylococcus aureusS. aureus causes diverse types of infections ranging from skin abscesses to bloodstream infections. Given the increasing prevalence of S. aureus drug-resistant strains, it is imperative to search for new strategies for treatment and prevention. Thus, we investigated the activity of molecules produced by a commensal S. epidermidis isolate against S. aureus biofilms. We showed that molecules present in S. epidermidis cell-free conditioned media (CFCM) caused a significant reduction in biofilm formation in most S. aureus clinical isolates, including all 4 agr types and agr-defective strains, without any impact on growth. S. epidermidis molecules also disrupted established S. aureus biofilms and reduced the antibiotic concentration required to eliminate them. Preliminary characterization of the active compound showed that its activity is resistant to heat, protease inhibitors, trypsin, proteinase K, and sodium periodate treatments, suggesting that it is not proteinaceous. RNA sequencing revealed that S. epidermidis-secreted molecules modulate the expression of hundreds of S. aureus genes, some of which are associated with biofilm production. Biofilm formation is one of the main virulence factors of S. aureus and has been associated with chronic infections and antimicrobial resistance. Therefore, molecules that can counteract this virulence factor may be promising alternatives as novel therapeutic agents to control S. aureus infections.IMPORTANCES. aureus is a leading agent of infections worldwide, and its main virulence characteristic is the ability to produce biofilms on surfaces such as medical devices. Biofilms are known to confer increased resistance to antimicrobials and to the host immune responses, requiring aggressive antibiotic treatment and removal of the infected surface. Here, we investigated a new source of antibiofilm compounds, the skin microbiome. Specifically, we found that a commensal strain of S. epidermidis produces molecules with antibiofilm activity, leading to a significant decrease of S. aureus biofilm formation and to a reduction of previously established biofilms. The molecules potentiated the activity of antibiotics and affected the expression of hundreds of S. aureus genes, including those associated with biofilm formation. Our research highlights the search for compounds that can aid us in the fight against S. aureus infections.
Asunto(s)
Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/química , Factores de Virulencia/fisiología , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/fisiologíaRESUMEN
Streptococcus dysgalactiae subsp. equisimilis (SDSE) isolates are the most common group C streptococci in humans and reports of invasive infections associated with SDSE have been increasing. Molecular epidemiology studies are an important strategy to trace the emergence and spread of possible well-fit bacterial pathogens of humans and animals. In this work, we analysed the antimicrobial and clonal profiles of 115 SDSE infection and colonization isolates of human and equine origin. PFGE revealed the spread of two main clusters: clone A (57.4%) and clone A (26.1%). Remarkably, two isolates from clone B obtained from human colonization cases displayed identical PFGE patterns to those of three equine infection isolates. In addition, multilocus sequence typing allocated these isolates to ST129 (CC31). All of the SDSE isolates were susceptible to penicillin, vancomycin, gentamicin, levofloxacin and chloramphenicol. Tetracycline and erythromycin resistance rates were 65.2 and 13.9% respectively. Nevertheless, none of the isolates displaying sporadic PFGE patterns showed erythromycin resistance. The majority of erythromycin-resistant isolates from clone A had inducible resistance to macrolides, lincosamines and streptogramins B (iMLSB phenotype), which is associated with the presence of the ermA gene, whereas the resistant isolates from clone B showed the M phenotype, associated with the mefA gene. In conclusion, the data indicated that the analysed collection of SDSE isolates displayed a clonal structure and that the isolates found in human colonization cases could also be involved in equine infections.