Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 998910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483969

RESUMEN

Elevated temperatures during berry ripening have been shown to affect grape quality. The crop forcing technique (summer pruning that 'force' the vine to start a new cycle) has been shown to improve berry quality by delaying the harvest date. However, yield is typically reduced on forced vines, which is attributed to vine low carbon availability soon after forcing and likely incomplete inflorescence formation. The present study aims to estimate the carbon balance of forced vines and evaluate vine responses to changes in carbon patterns due to forcing. Three treatments were studied on Tempranillo cultivar: non-forced vines (Control), vines forced shortly after fruit set (CFearly) and vines forced one month later at the beginning of bunch closure (CFlate). Whole canopy net carbon exchange was modelled and validated using two whole canopy gas exchange chambers. In addition, non-structural carbohydrate reserves at budburst, forcing date and harvest, were analysed. Yield, yield components and vegetative growth were also evaluated. Harvest date was delayed by one and two months in the CFearly and CFlate, respectively, which increased must acidity. However, yield was lower in the forced treatments compared to the Control (49% lower for CFearly and 82% for CFlate). In the second year, at the time when CFearly and CFlate dormant buds were unlocked (forced budburst), forced vines had significantly lower non-structural carbohydrates than Control vines at budburst. Although the time elapsed from budburst to reach maximum net carbon exchange was longer for the Control treatment (80 days) than for the forced treatments (about 40 days), average daily net carbon exchange until harvest was comparable between Control (60.9 g CO2/vine/day) and CFearly (55.9 g CO2/vine/day), but not for CFlate (38.7 g CO2/vine/day). In addition, the time elapsed from budburst to harvest was shorter in forced treatments (about 124 days) than for the Control (172 days). As a result, the cumulative net carbon exchange until harvest was reduced by 35% (CFearly) and 55% (CFlate) in the forced treatments. However, no differences in carbon reserves at harvest were observed between treatments partly helped by the higher source:sink ratio observed in forced than Control vines.

2.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906820

RESUMEN

Among the diverse techniques for monitoring soil moisture, capacitance-type soil moisture sensors are popular because of their low cost, low maintenance requirements, and acceptable performance. However, although in laboratory conditions the accuracy of these sensors is good, when installed in the field they tend to show large sensor-to-sensor differences, especially under drip irrigation. It makes difficult to decide in which positions the sensors are installed and the interpretation of the recorded data. The aim of this paper is to study the variability involved in the measurement of soil moisture by capacitance sensors in a drip-irrigated orchard and, using this information, find ways to optimize their usage to manage irrigation. For this purpose, the study examines the uncertainties in the measurement process plus the natural variability in the actual soil water dynamics. Measurements were collected by 57 sensors, located at 10 combinations of depth and position relative to the dripper. Our results showed large sensor-to-sensor differences, even when installed at equivalent depth and coordinates relative to the drippers. In contrast, differences among virtual sensors simulated using a HYDRUS-3D model at those soil locations were one order of magnitude smaller. Our results highlight, as a possible cause for the sensor-to-sensor differences in the measurements by capacitance sensors, the natural variability in size, shape, and centering of the wet area below the drippers, combined with the sharply defined variation in water content at the soil scale perceived by the sensors.

3.
Tree Physiol ; 28(9): 1375-82, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18595850

RESUMEN

We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.


Asunto(s)
Frutas/crecimiento & desarrollo , Pyrus/fisiología , Agua/fisiología , Ritmo Circadiano , Raíces de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Suelo/análisis , Agua/análisis
4.
Tree Physiol ; 27(11): 1619-26, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17669751

RESUMEN

Effect of water stress during stage III of peach fruit development on winter root starch concentration (RSC) and subsequent reproductive development was studied. Two irrigation treatments were applied in two consecutive seasons (2003-2004): full irrigation (FI) and no irrigation during stage III of fruit development until visible leaf wilting (LWI), which occurred when midday stem water potential reached -1.80 MPa. Three fruit thinning intensities were applied within each irrigation treatment. The year 2005 was a recovery year in which all trees received full irrigation and commercial fruit thinning. Water deficit and high fruit loads in the previous season significantly reduced the concentration of winter RSC. Fruit set and fruit growth from full bloom to 30 days after full bloom (30 DAFB) increased with increasing winter RSC before other factors, such as inter-fruit competition and availability of carbon from current photosynthesis, came into play. Consequently, severe water stress reduced the total number of fruits and fruit dry mass growth 30 DAFB. However, during the recovery year and after fruit thinning, fruit loads were similar between irrigation treatments and yield capacity remained unaffected. Peach fruit production recovered quickly from the deleterious effects of two consecutive years of water stress because of a combination of two factors: (1) reduced initial fruit set that was still adequate to achieve a commercial crop; and (2) the low sensitivity of fruit growth 30 DAFB to winter RSC.


Asunto(s)
Frutas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Prunus/crecimiento & desarrollo , Almidón/metabolismo , Agua/metabolismo , Biomasa , Flores/crecimiento & desarrollo , Prunus/metabolismo , Distribución Aleatoria , Estaciones del Año , Factores de Tiempo
5.
Tree Physiol ; 26(4): 469-77, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16414926

RESUMEN

A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.


Asunto(s)
Desastres , Frutas/crecimiento & desarrollo , Prunus/crecimiento & desarrollo , Frutas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Transpiración de Plantas/fisiología , Prunus/fisiología , Estaciones del Año , Factores de Tiempo , Agua/metabolismo
6.
J Agric Food Chem ; 50(19): 5349-54, 2002 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-12207473

RESUMEN

The HPLC phenolic profile of virgin olive oils obtained from young olive trees (Arbequina cv.) grown under different deficit irrigation strategies was studied. Deficit irrigation (RDI) did not affect all the phenolic compounds in the same way. Lignans, vanillic acid, vanillin, and the unknown phenolic compound named P24 increased in the oils from the most irrigated treatments. The secoiridoid derivatives and the unknown phenolic compound named P19 increased in the oils from the most stressed irrigation treatments. The period of growth where a water stress significantly affects the phenolic profile of oils was between pit hardening and the first stages of fruit growth and oil accumulation, independently of the water applied during the previous period to harvest. The phenolic profile and those parameters related to phenol content, oxidative stability, and the bitter index were significantly affected only in the most severe RDI strategies. Other strategies produced important savings in irrigation requirements and an increase in the water use efficiency without noticeably affecting the phenolic profile.


Asunto(s)
Agricultura/métodos , Cromatografía Líquida de Alta Presión , Oleaceae/crecimiento & desarrollo , Fenoles/análisis , Aceites de Plantas/química , Agua , Oleaceae/química , Aceite de Oliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA