Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Rep, v. 26, e00441, jun. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2965

RESUMEN

The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing E. coli BL21(DE3). Cultivation strategies and corresponding process costs covered a wide range of operational conditions, including different media, inducers, and temperatures. The core expenses were related to the medium and cooling. When the price of peptone was above the threshold value of US$ 30/kg, defined medium became the best choice. IPTG and temperatures around 32°C led to shorter cultures and lower PspA4Pro production costs. The procedure offers a simple, accessible theoretical tool to identify cost-effective production strategies using bioreactors.

2.
J Ind Microbiol Biotechnol ; 38(8): 1055-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20922457

RESUMEN

This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with κ-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HA(app)) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g(-1) of gel for GLU, 7.76 mg g(-1) of gel for GLY, and 7.65 mg g(-1) of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g(-1) of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.


Asunto(s)
Ascomicetos/metabolismo , Quitosano/química , Hidrogeles/química , Lipasa/química , Alginatos/química , Biocombustibles , Biotecnología , Carragenina/química , Carragenina/metabolismo , Catálisis , Electrólitos/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Compuestos Epoxi/química , Esterificación , Ácido Glucurónico/química , Glutaral/química , Semivida , Ácidos Hexurónicos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Lipasa/metabolismo , Alcohol Polivinílico/química , Propanoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA