Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Sci Technol ; 36(16): 3504-11, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12214641

RESUMEN

Decontamination of metal surfaces contaminated with low levels of radionuclides is a major concern at Department of Energy facilities. The development of an environmentally friendly and cost-effective decontamination process requires an understanding of their association with the corroding surfaces. We investigated the association of uranium with the amorphous and crystalline forms of iron oxides commonly formed on corroding steel surfaces. Uranium was incorporated with the oxide by addition during the formation of ferrihydrite, goethite, green rust II, lepidocrocite, maghemite, and magnetite. X-ray diffraction confirmed the mineralogical form of the oxide. EXAFS analysis at the U L(III) edge showed that uranium was present in hexavalent form as a uranyl oxyhydroxide species with goethite, maghemite, and magnetite and as a bidentate inner-sphere complex with ferrihydrite and lepidocrocite. Iron was present in the ferric form with ferrihydrite, goethite, lepidocrocite, and maghemite; whereas with magnetite and green rust II, both ferrous and ferric forms were present with characteristic ferrous:total iron ratios of 0.65 and 0.73, respectively. In the presence of the uranyl ion, green rust II was converted to magnetite with concomitantreduction of uranium to its tetravalent form. The rate and extent of uranium dissolution in dilute HCl depended on its association with the oxide: uranium present as oxyhydroxide species underwent rapid dissolution followed by a slow dissolution of iron; whereas uranium present as an inner-sphere complex with iron resulted in concomitant dissolution of the uranium and iron.


Asunto(s)
Contaminación Ambiental/prevención & control , Compuestos Férricos/análisis , Acero/química , Uranio/análisis , Corrosión , Compuestos Férricos/química , Solubilidad , Uranio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA