Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2302360120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639610

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.


Asunto(s)
Calidad de Vida , Sarcopenia , Humanos , Ejercicio Físico , Proteínas Mitocondriales/genética , Músculo Esquelético
2.
Sci Rep ; 10(1): 16888, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060645

RESUMEN

The arcuate nucleus (ARC) of the hypothalamus is a key regulator of food intake, brown adipose tissue (BAT) thermogenesis, and locomotor activity. Whole-body deficiency of the transcriptional coactivator peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1ß (PGC-1ß) disrupts mouse circadian locomotor activity and BAT-regulated thermogenesis, in association with altered gene expression at the central level. We examined whether PGC-1ß expression in the ARC is required for proper energy balance and locomotor behavior by generating mice lacking the PGC-1ß gene specifically in pro-opiomelanocortin (POMC) neurons. POMC neuron-specific deletion of PGC-1ß did not impact locomotor behavior, food intake, body composition, energy fuel utilization and metabolic rate in fed, 24-h fasted and 24-h refed conditions. In contrast, in the fed state, deletion of PGC-1ß in POMC cells elevated core body temperature during the nighttime period. Importantly, this higher body temperature is not associated with changes in BAT function and gene expression. Conversely, we provide evidence that mice lacking PGC-1ß in POMC neurons are more sensitive to the effect of leptin on heat dissipation. Our data indicate that PGC-1ß-expressing POMC neurons are part of a circuit controlling body temperature homeostasis and that PGC-1ß function in these neurons is involved in the thermoregulatory effect of leptin.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Neuronas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Leptina/metabolismo , Leptina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Proopiomelanocortina/metabolismo , Proopiomelanocortina/fisiología , Termogénesis/fisiología , Factores de Transcripción/metabolismo
3.
Aging Cell ; 18(5): e12993, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290266

RESUMEN

Age-related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC-1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen-related receptor α-dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC-1α. As a result, PGC-1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro-apoptotic effects of ceramide and thapsigargin were blunted by PGC-1α in muscle cells. Accordingly, mice with muscle-specific gain-of-function and loss-of-function of PGC-1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC-1α on muscle function and overall health span in aging.


Asunto(s)
Envejecimiento/metabolismo , Calcio/metabolismo , Homeostasis , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Retículo Sarcoplasmático/metabolismo , Estrés Fisiológico , Animales , Muerte Celular , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Proc Natl Acad Sci U S A ; 116(32): 16111-16120, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320589

RESUMEN

Brain-derived neurotrophic factor (BDNF) influences the differentiation, plasticity, and survival of central neurons and likewise, affects the development of the neuromuscular system. Besides its neuronal origin, BDNF is also a member of the myokine family. However, the role of skeletal muscle-derived BDNF in regulating neuromuscular physiology in vivo remains unclear. Using gain- and loss-of-function animal models, we show that muscle-specific ablation of BDNF shifts the proportion of muscle fibers from type IIB to IIX, concomitant with elevated slow muscle-type gene expression. Furthermore, BDNF deletion reduces motor end plate volume without affecting neuromuscular junction (NMJ) integrity. These morphological changes are associated with slow muscle function and a greater resistance to contraction-induced fatigue. Conversely, BDNF overexpression promotes a fast muscle-type gene program and elevates glycolytic fiber number. These findings indicate that BDNF is required for fiber-type specification and provide insights into its potential modulation as a therapeutic target in muscle diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucólisis , Fibras Musculares Esqueléticas/metabolismo , Animales , Marcha , Regulación de la Expresión Génica , Locomoción , Ratones Noqueados , Modelos Biológicos , Placa Motora/metabolismo , Contracción Muscular , Fatiga Muscular , Especificidad de Órganos , Oxidación-Reducción , Condicionamiento Físico Animal , Transducción de Señal
5.
Front Physiol ; 9: 242, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29618980

RESUMEN

Aging is associated with a decline in cardiac function due to a decreased myocardial reserve. This adverse cardiac remodeling comprises of a variety of changes, including a reduction in mitochondrial function and a decline in the expression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a central regulator of mitochondrial biogenesis and metabolic adaptation in the myocardium. To study the etiological involvement of PGC-1α in cardiac aging, we used mouse models mimicking the modest down- and upregulation of this coactivator in the old and the exercised heart, respectively. Young mice with reduced cardiac expression of PGC-1α recapitulated part of the age-related impairment in mitochondrial gene expression, but otherwise did not aggravate the aging process. Inversely however, moderate overexpression of PGC-1α counteracts numerous key age-related remodeling changes, e.g., by improving blood pressure, age-associated apoptosis, and collagen accumulation, as well as in the expression of many, but not all cardiac genes involved in mitochondrial biogenesis, dynamics, metabolism, calcium handling and contractility. Thus, while the reduction of PGC-1α in the heart is insufficient to cause an aging phenotype, moderate overexpression reduces pathological remodeling of older hearts and could thereby contribute to the beneficial effects of exercise on cardiac function in aging.

6.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29067788

RESUMEN

The age-related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age-associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC-1α in the therapeutic effect of exercise in aging. Intriguingly, PGC-1α muscle-specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging-related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC-1α modulation. Surprisingly, we discovered that muscle PGC-1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC-1α.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Animales , Ratones , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo
7.
Mol Metab ; 5(7): 580-588, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27408781

RESUMEN

OBJECTIVE: Food intake and whole-body energy homeostasis are controlled by agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) neurons located in the arcuate nucleus of the hypothalamus. Key energy sensors, such as the AMP-activated protein kinase (AMPK) or sirtuin 1 (SIRT1), are essential in AgRP and POMC cells to ensure proper energy balance. In peripheral tissues, the transcriptional coactivator PGC-1α closely associates with these sensors to regulate cellular metabolism. The role of PGC-1α in the ARC nucleus, however, remains unknown. METHODS: Using AgRP and POMC neurons specific knockout (KO) mouse models we studied the consequences of PGC-1α deletion on metabolic parameters during fed and fasted states and on ghrelin and leptin responses. We also took advantage of an immortalized AgRP cell line to assess the impact of PGC-1α modulation on fasting induced AgRP expression. RESULTS: PGC-1α is dispensable for POMC functions in both fed and fasted states. In stark contrast, mice carrying a specific deletion of PGC-1α in AgRP neurons display increased adiposity concomitant with significantly lower body temperature and RER values during nighttime. In addition, the absence of PGC-1α in AgRP neurons reduces food intake in the fed and fasted states and alters the response to leptin. Finally, both in vivo and in an immortalized AgRP cell line, PGC-1α modulates AgRP expression induction upon fasting. CONCLUSIONS: Collectively, our results highlight a role for PGC-1α in the regulation of AgRP neuronal functions in the control of food intake and peripheral metabolism.

8.
Biochemistry ; 53(1): 135-42, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24341978

RESUMEN

Propofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homologue from Gloeobacter violaceus . In the structure of GLIC cocrystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane α-helices (Nury, H, et al. (2011) Nature 469, 428-431). To identify propofol binding sites in GLIC in solution, we used a recently developed photoreactive propofol analogue (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol or AziPm) that acts as an anesthetic in vivo and potentiates GABAAR in vitro. For GLIC expressed in Xenopus oocytes, propofol and AziPm inhibited current responses at pH 5.5 (EC20) with IC50 values of 20 and 50 µM, respectively. When [(3)H]AziPm (7 µM) was used to photolabel detergent-solubilized, affinity-purified GLIC at pH 4.4, protein microsequencing identified propofol-inhibitable photolabeling of three residues in the GLIC transmembrane domain: Met-205, Tyr-254, and Asn-307 in the M1, M3, and M4 transmembrane helices, respectively. Thus, for GLIC in solution, propofol and AziPm bind competitively to a site in proximity to these residues, which, in the GLIC crystal structure, are in contact with the propofol bound in the intrasubunit pocket.


Asunto(s)
Proteínas Bacterianas/química , Canales Iónicos/química , Propofol/química , Marcadores de Afinidad/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Diazometano/análogos & derivados , Diazometano/química , Diazometano/farmacología , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos Activados por Ligandos , Modelos Moleculares , Propofol/análogos & derivados , Propofol/farmacología , Estructura Terciaria de Proteína , Receptores de GABA-A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA