RESUMEN
Yield multi-location trials associated to geostatistical techniques with environmental covariables can provide a better understanding of G x E interactions and, consequently, adaptation limits of soybean cultivars. Thus, the main objective of this study is understanding the environmental covariables effects on soybean adaptation, as well as predicting the adaptation of soybean under environmental variations and then recommend each soybean cultivar to favorable environments aiming maximize the average yield. The trials were carried out in randomized block design (RBD) with three replicates over three years, in 28 locations. Thirty-two genotypes (commercial and pre-commercial) representing different maturity groups (7.5-8.5) were evaluated in each trial were covering the Edaphoclimatic Region (REC) 401, 402 and 403. The covariables adopted as environmental descriptors were accumulated rainfall, minimum temperature, mean temperature, maximum temperature, photoperiod, relative humidity, soil clay content, soil water avaibility and altitude. After fitting means through Mixed Linear Model, the Regression-Kriging procedure was applied to spacialize the grain yield using environmental covariables as predictors. The covariables explained 32.54% of the GxE interaction, being the soil water avaibility the most important to the adaptation of soybean cultivars, contributing with 7.80%. Yield maps of each cultivar were obtained and, hence, the yield maximization map based on cultivar recommendation was elaborated.
Asunto(s)
Glycine max , Glycine max/genética , Glycine max/crecimiento & desarrollo , Brasil , Genotipo , Geografía , Adaptación Fisiológica , Suelo/químicaRESUMEN
Anthracnose, caused by the fungus Colletotrichum lindemuthianum, poses a significant and widespread threat to the common bean crop. The use of plant genetic resistance has proven to be the most effective strategy for managing anthracnose disease. The Amendoim Cavalo (AC) Andean cultivar has resistance against multiple races of C. lindemuthianum, which is conferred by the Co-AC gene. Fine mapping of this resistance gene to common bean chromosome Pv01 enabled the identification of Phvul.001G244300, Phvul.001G244400, and Phvul.001G244500 candidate genes for further validation. In this study, the relative expression of Co-AC candidate genes was assessed, as well as other putative genes in the vicinity of this locus and known resistance genes, in the AC cultivar following inoculation with the race 73 of C. lindemuthianum. Gene expression analysis revealed significantly higher expression levels of Phvul.001G244500. Notably, Phvul.001G244500 encodes a putative Basic Helix-Loop-Helix transcription factor, suggesting its involvement in the regulation of defense responses. Furthermore, a significant modulation of the expression of defense-related genes PR1a, PR1b, and PR2 was observed in a time-course experiment. These findings contribute to the development of improved strategies for breeding anthracnose-resistant common bean cultivars, thereby mitigating the impact of this pathogen on crop yields and ensuring sustainable bean production.
RESUMEN
Teak (Tectona grandis Linn. f.) is considered one of the most expensive hardwoods in the world. The dispersion of the species over the years has taken the teak beyond its first sources of diversity and little is known about the genetic origin and genetic variability. Thus, this study aimed to investigate the genetic diversity and genetic population structure existing in a representative teak germplasm bank collection. DNA was extracted from young leaves and each sample were genotyped by whole genome sequencing at 3 giga bases per sample, the sequences are aligned using the genome, and SNPcalls and quality control were made. To study the population structure of the genotypes, Bayesian variational inference was used via fastStructure, the phylogenetic tree was based on the modified Euclidean distance and the clustering by the UPGMA hierarchical method. Genetic diversity was analyzed based on the pairwise genetic divergence (Fst) of Weir and Cockerham. Genotyping by sequencing resulted in a database of approximately 1.4 million of variations SNPs were used for analysis. It was possible to identify four populations with considerable genetic variability between and within them. While the genetic variability in teak is generally known to be narrow, this study confirmed the presence of genetic variability scale in teak, which is contrary to what was initially expected.
Asunto(s)
Lamiaceae , Genotipo , Filogenia , Teorema de Bayes , Lamiaceae/genética , Genética de PoblaciónRESUMEN
Tectona grandis Linn., also known as teak, is a highly valued species with adaptability to a wide range of climatic conditions and high tolerance to soil variations, making it an attractive option for both commercial and conservation purposes. In this sense, the classification of cultivated teak genotypes is crucial for both breeding programs and conservation efforts. This study examined the relationship between traits related to damage in the stem of teak plants caused by Ceratocystis fimbriata (a soil-borne pathogen that negatively impacts the productivity of teak plantations) and the spectral reflectance of 110 diverse clones, using near-infrared spectroscopy (NIRS) data and partial least squares regression (PLSR) analysis. Cross-validation models had R2 = 0.894 (ratio of standard error of prediction to standard deviation: RPD = 3.1), R2 = 0.883 (RPD = 2.7), and R2 = 0.893 (RPD = 2.8) for predicting stem lesion area, lesion length, and severity of infection, respectively. Teak genotypes (clones) can benefit from the creation of a calibration model utilizing NIRS-generated data paired with PLSR, which can effectively screen the magnitude of damage caused by the fungus. Overall, while the study provides valuable information for teak breeding and conservation efforts, a long-term perspective would be essential to evaluate the sustainability of teak genotypes over various growth stages and under continuous pathogen pressure.
RESUMEN
One of the significant challenges of common bean breeding is developing cultivars with high yields under drought conditions. The present study attempted to map quantitative trait loci (QTLs) and identify molecular markers that are linked to drought tolerance in the common bean. We evaluated 160 recombinant inbred lines (RILs), derived from the cross between the carioca cultivars IAPAR 81 (drought tolerant) and LP97-28 (susceptible to drought). In 2014 and 2015, two experiments were conducted (DS-drought stress, and NS-no drought stress). In the DS experiment, water suppression was performed at the flowering stages R5 to R6. The results of our experiments showed that drought conditions play an essential role in reducing most of the traits that were evaluated. RILs under drought conditions reduced the grain yield by 62.03% and 24% in 2014 and 2015, respectively. We identified 15 quantitative trait loci distributed on the chromosomes Pv01, Pv02, Pv03, Pv07, Pv08, Pv09, Pv10, and Pv11, related to grain yield, seed yield per day, 100-seed weight, number of pods per plant, plant height, number of days for flowering, and number of days to maturity. The characteristics of seed yield per day, 100-seed weight, and number of days to maturity showed that QTLs colocalized on Pv07. Identifying QTLs that are linked to drought tolerance in the RIL population IAPAR 81 × LP97-28 is of particular importance for common bean breeding programs seeking to improve carioca beans that are cultivated in regions with drought conditions, such as Brazil.
RESUMEN
Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum, is one of the world's most destructive diseases of common bean. The use of resistant cultivars is the most cost-effective strategy to manage this disease; however, durable resistance is difficult to achieve due to the vast virulence diversity of the anthracnose pathogen. Finding new genes with broad-spectrum resistance increases the prospect of designing an effective anthracnose-management strategy. Genetic analysis confirmed the presence of a single, dominant anthracnose-resistance locus in AC, which we provisionally named Co-AC. Bulk segregant analysis and genetic mapping of two F2 populations from the crosses AC × PI207262 and AC × G 2333 were used to determine the position of the Co-AC locus in a 631 Kbp genomic region flanked by the SNP markers SS56 and SS92 on the lower arm of chromosome Pv01. By genotyping 77 F3 plants from the AC × PI207262 cross using nine additional markers, we fine-mapped the Co-AC locus to a significantly smaller genomic region (9.4 Kbp) flanked by the SNP markers SS102 and SS165. This 9.4 Kbp region harbors three predicted genes based on the common bean reference genome, notably including the gene model Phvul.001G244300, which encodes Clathrin heavy chain 1, a protein that supports specific stomatal regulation functions and might play a role in plant defense signaling. Because the Co-AC resistance locus is linked in cis, it can be selected with great efficiency using molecular markers. These results will be very useful for breeding programs aimed at developing bean cultivars with anthracnose resistance using marker-assisted selection. This study revealed the broad-spectrum resistance of AC to C. lindemuthianum and the existence of the Co-AC anthracnose-resistance locus. Fine mapping positioned this locus in a small genomic region on the lower end of chromosome Pv01 that contained three candidate genes for the Co-AC locus.
Asunto(s)
Resistencia a la Enfermedad/genética , Phaseolus/genética , Cruzamiento/métodos , Mapeo Cromosómico/métodos , Colletotrichum/patogenicidad , Genes de Plantas/genética , Ligamiento Genético/genética , Marcadores Genéticos/genética , Genotipo , Phaseolus/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. RESULTS: The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. CONCLUSIONS: The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.