RESUMEN
In this article, we present a molecular thermodynamic study of a system of N particles contained within a volume V and interacting via a hard-core pair potential with an attractive interaction according to the Wolf model for charged systems. This variable-range potential is characterized by three parameters: the repulsive hard-core diameter σ, the energy-well depth ϵ, and the inverse range α; a fourth parameter of the model is a cut-off distance xc that depends on α according to the relation xc = 2/α. Two equations of state (EOSs) are presented and derived from thermodynamic perturbation theory and Monte Carlo (MC) simulation data. The first EOS is given by the standard Zwanzig's high-temperature expansion of the Helmholtz free energy, where the first three perturbation terms a1, a2, and a3 were obtained from MC simulations in the canonical ensemble (NVT) and parameterized as functions of α and the reduced density of particles ρ* = Nσ3/V. The second EOS was obtained from the discrete perturbation theory applied to a discrete representation of the Wolf potential. Results for pressures, internal energies, and isochoric heat capacities are compared to the MC computer simulation data of the Wolf system, including vapor-liquid coexistence curves, for different values of α. Overall, both EOSs give a very good representation of the thermodynamic properties of the Wolf fluid when 0.3 ≤ α ≤ 1.0 and 0.05 ≤ ρ* ≤ 0.8. Since the Yukawa fluid can reproduce information of screened ionic interactions, we discuss the equivalence between the Wolf and Yukawa fluids in the context of equivalent systems in liquid theory.
RESUMEN
We report an experimental and theoretical study of magnetic properties of synthetic eumelanin. The magnetization curves are determined by using both a vibrating sample magnetometer and a superconducting quantum interferometer device in an extended range of magnetic fields ranging from -10 kOe to 10 kOe at different temperatures. We find that the eumelanin magnetization can be qualitatively explained in terms of a simple model of dipolar spheres with an intrinsic magnetic moment. The latter one is experimentally measured by using X-band electron paramagnetic resonance. Our findings indicate that synthetic melanins are superparamagnetic.
Asunto(s)
Magnetismo , Melaninas/química , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Melaninas/síntesis química , Método de Montecarlo , TemperaturaRESUMEN
The thermodynamic and structural behaviors of confined discrete-potential fluids are analyzed by computer simulations, studying in a systematic way the effects observed by varying the density, temperature, and parameters of the potentials that characterize the molecule-molecule interactions. The Gibbs ensemble simulation technique for confined fluids [A. Z. Panagiotopoulos, Mol. Phys. 62, 701 (1987)] is applied to a fluid confined between two parallel hard walls. Two different systems have been considered, both formed by spherical particles that differ by the interparticle pair potential: a square well plus square shoulder or a square shoulder plus square well interaction. These model interactions can describe in an effective way pair potentials of real molecular and colloidal systems. Results are compared with the simpler reference systems of square-shoulder and square-well fluids, both under confinement. From the adsorption characterization through the use of density profiles, it is possible to obtain specific values of the interparticle potential parameters that result in a positive to negative adsorption transition.
RESUMEN
We have studied the orientational structure of a dipolar hard-spherical colloid on a homogeneous isotropic phase. The results are expressed as a function of the dipolar strength mu and volume fraction phi of dipolar colloids, and the refractive index of the scattering medium, n(s). The study is based on the self-correlation of the orientation density of the dipolar colloids, which is the static orientational structure factor [F(q)], where q is the wave vector. The importance of this quantity is that for very low phi values, it can be probed in a depolarized light scattering experiment. We have found that the structure of the suspension is better observed for high n(s). F(q) presents a different behavior for dilute and dense concentrations, it is also observed that the position of its minimum depends on phi. The response of a dipolar colloid due to its collective orientational behavior is also studied, using as an "ordering parameter" the static orientational structure factor at q=0[F(q=0)]. The study is performed for isochores as a function of mu. We have divided the analysis into five regimes, from very low to very high phi; values, i.e., phi=0.005 24, 0.1, 0.2, 0.35, and 0.45. Our analysis suggests that the dipolar colloid evolves to an orientationally ordered phase when the dipolar strength is increased, for all concentrations except for the lowest value case, phi=0.005 24. When phi=0.1 the dipolar colloid reaches the transition suddenly, whereas for the very low regime, the slope of F(q=0) first increases as if the dipolar colloid would evolve to an orientationally ordered phase; but near the transition the slope is inverted, resulting in a no global orientational order. Thus, our results suggest that in the very low regime a dipolar colloid may have a reentrant transition.