Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(48): eabj2946, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34818051

RESUMEN

The recent expansion of Atlantic waters into the Arctic Ocean represents undisputable evidence of the rapid changes occurring in this region. Understanding the past variability of this "Atlantification" is thus crucial in providing a longer perspective on the modern Arctic changes. Here, we reconstruct the history of Atlantification along the eastern Fram Strait during the past 800 years using precisely dated paleoceanographic records based on organic biomarkers and benthic foraminiferal data. Our results show rapid changes in water mass properties that commenced in the early 20th century­several decades before the documented Atlantification by instrumental records. Comparison with regional records suggests a poleward expansion of subtropical waters since the end of the Little Ice Age in response to a rapid hydrographic reorganization in the North Atlantic. Understanding of this mechanism will require further investigations using climate model simulations.

2.
Molecules ; 24(21)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31683504

RESUMEN

Biogenic silica is the major component of the external skeleton of marine micro-organisms, such as diatoms, which, after the organisms death, settle down onto the seabed. These micro-organisms are involved in the CO2 cycle because they remove it from the atmosphere through photosynthesis. The biogenic silica content in marine sediments, therefore, is an indicator of primary productivity in present and past epochs, which is useful to study the CO2 trends. Quantification of biosilica in sediments is traditionally carried out by wet chemistry followed by spectrophotometry, a time-consuming analytical method that, besides being destructive, is affected by a strong risk of analytical biases owing to the dissolution of other silicatic components in the mineral matrix. In the present work, the biosilica content was directly evaluated in sediment samples, without chemically altering them, by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Quantification was performed by combining the multivariate standard addition method (MSAM) with the net analyte signal (NAS) procedure to solve the strong matrix effect of sediment samples. Twenty-one sediment samples from a sediment core and one reference standard sample were analyzed, and the results (extrapolated concentrations) were found to be comparable to those obtained by the traditional wet method, thus demonstrating the feasibility of the ATR-FTIR-MSAM-NAS approach as an alternative method for the quantification of biosilica. Future developments will cover in depth investigation on biosilica from other biogenic sources, the extension of the method to sediments of other provenance, and the use higher resolution IR spectrometers.


Asunto(s)
Organismos Acuáticos/química , Sedimentos Geológicos/química , Dióxido de Silicio/química , Regiones Antárticas , Geografía , Estándares de Referencia , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA