RESUMEN
Vector control is still the recommended approach to avoid arbovirus outbreaks. Herein, we investigate oviposition preferences of Aedes aegypti (Diptera: Culicidae) females under a semi-field structure Rio de Janeiro, Brazil. For that, in Experiment 1, we used two settings: 'Single items', which included as containers drain, beer bottle, bucket, car tyre, water tank, and a potted Peace Lily (Spathiphyllum wallisii) in a saucer with water, or 'Multiple containers', as an urban simulation, in which one drain, two additional beer bottles, and an extra plant pot saucer were added. Experiment 2 (sensory cues) used five variations of potted plant, each one varying in the range of sensory cues known to attract gravid females to oviposition containers. Our results indicate that gravid Ae. aegypti prefer to oviposit close to the ground and in open water containers with organic compounds from plant watering. Domestic large artificial containers containing tap water received significantly fewer eggs, except for the car tyre, which exhibited as many eggs as the potted plant. We also show that visual (potted plant shape) and olfactory clues (odour of the plant or from water containing organic matter) were equally attractive separately as were these stimuli together.
Asunto(s)
Aedes , Femenino , Animales , Oviposición , Mosquitos Vectores , Brasil , AguaRESUMEN
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound "signatures" may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.
Asunto(s)
Comunicación Animal , Dípteros/fisiología , Hemípteros/fisiología , Insectos Vectores/fisiología , Sonido , Animales , Conducta Sexual Animal/fisiología , Especificidad de la EspecieRESUMEN
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.