Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(16): 5262-70, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-26704697

RESUMEN

Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 Å resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-4S] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Oxidación-Reducción
2.
Inorg Chem ; 54(12): 5942-8, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26016528

RESUMEN

Zinc finger transcription factors are the largest class of metalloproteins in the human genome. Binding of Zn(II) to their canonical Cys2His2, Cys3His1, or Cys4 sites results in metal-induced protein folding events required to achieve their biologically active structures. However, the coupled nature of metal binding and protein folding obscures the individual free energy contributions of each process toward overall zinc finger stabilization. Herein, we separate the energetic contributions of metal-ligand interactions from those of protein-protein interactions using a natural protein scaffold that retains essentially identical structures with and without Zn(II) bound, the 59 amino acid zinc binding domain of human transcription factor IIB (ZBD-TFIIB). The formation constant of Zn(II)-ZBD-TFIIB, which contains a single Cys3His1 site, was determined to be 1.5 × 10(15) M(-1) via fluorimetry and isothermal titration calorimetry. Isothermal titration calorimetry showed that Zn(II) binding is entropically favored at pH 5.5, 7.0, and 8.0 and enthalpically favored at pH 8.0 but slightly enthalpically disfavored at pH 5.5 and 7.0. The conditional dissociation constants of Zn(II)-ZBD-TFIIB and natural Cys3His1 zinc finger proteins were compared to determine the free energy cost of protein folding in the latter. Our analysis reveals that the energetic cost to fold zinc finger proteins is minimal relative to the contribution of Zn(II) binding and suggests that the true role of Zn(II) binding may be to modulate protein dynamics and/or kinetically template the protein folding process.


Asunto(s)
Pliegue de Proteína , Factor de Transcripción TFIIB/química , Factor de Transcripción TFIIB/metabolismo , Zinc/metabolismo , Sitios de Unión , Calorimetría/métodos , Humanos , Concentración de Iones de Hidrógeno , Espectrofotometría Ultravioleta , Termodinámica , Zinc/química
3.
Inorg Chem ; 53(12): 6309-20, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24893204

RESUMEN

Zinc finger proteins that bind Zn(II) using a Cys2His2 coordination motif within a ßßα protein fold are the most abundant DNA binding transcription factor domains in eukaryotic systems. These classic zinc fingers are typically unfolded in the apo state and spontaneously fold into their functional ßßα folds upon incorporation of Zn(II). These metal-induced protein folding events obscure the free energy cost of protein folding by coupling the protein folding and metal-ion binding thermodynamics. Herein, we determine the formation constant of a Cys2His2/ßßα zinc finger domain, the C-terminal finger of the Wilms' tumor suppressor protein (WT1-4), for the purposes of determining its free energy cost of protein folding. Measurements of individual conditional dissociation constants, Kd values, at pH values from 5 to 9 were determined using fluorescence spectroscopy by direct or competition titration. Potentiometric titrations of apo-WT1-4 followed by NMR spectroscopy provided the intrinsic pKa values of the Cys2His2 residues, and corresponding potentiometric titrations of Zn(II)-WT1-4 followed by fluorescence spectroscopy yielded the effective pKa(eff) values of the Cys2His2 ligands bound to Zn(II). The Kd, pKa, and pKa(eff) values were combined in a minimal, complete equilibrium model to yield the pH-independent formation constant value for Zn(II)-WT1-4, Kf(ML) value of 7.5 × 10(12) M(-1), with a limiting Kd value of 133 fM. This shows that Zn(II) binding to the Cys2His2 site in WT1-4 provides at least -17.6 kcal/mol in driving force to fold the protein scaffold. A comparison of the conditional dissociation constants of Zn(II)-WT1-4 to those from the model peptide Zn(II)-GGG-Cys2His2 over the pH range 5.0 to 9.0 and a comparison of their pH-independent Kf(ML) values demonstrates that the free energy cost of protein folding in WT1-4 is less than +2.1 kcal/mol. These results validate our GGG model system for determining the cost of protein folding in natural zinc finger proteins and support the conclusion that the cost of protein folding in most zinc finger proteins is ≤+4.2 kcal/mol, a value that pales in comparison to the free energy contribution of Zn(II) binding, -17.6 kcal/mol.


Asunto(s)
Proteínas WT1/química , Proteínas WT1/metabolismo , Tumor de Wilms/metabolismo , Dedos de Zinc , Zinc/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Termodinámica
4.
J Biol Chem ; 285(39): 30181-91, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20630863

RESUMEN

NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.


Asunto(s)
Citocromo-B(5) Reductasa/química , Citocromos b5/química , Hemo/química , Modelos Moleculares , Animales , Cristalografía por Rayos X , Citocromo-B(5) Reductasa/genética , Citocromos b5/genética , Hemo/genética , Humanos , Ratones , Homología Estructural de Proteína
5.
Protein Eng Des Sel ; 21(11): 645-52, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18755707

RESUMEN

The construction and characteristics of the stable and well-structured alpha(4)W protein are described. The 117-residue, single-chain protein has a molecular weight of 13.1 kDa and is designed to fold into a four-helix bundle. Experimental characterization of the expressed and purified protein shows a 69.8 +/- 0.8% helical content over a 5.5-10.0 pH range. The protein is thermostable with a T(M) > 355 K and has a free energy of unfolding as measured by chemical denaturation of -4.7 kcal mol(-1) at 25 degrees C and neutral pH. One-dimensional (1D) proton and 2D (15)N-HSQC spectra show narrow, well-dispersed spectral lines consistent with a uniquely structured alpha-helical protein. Analytical ultracentrifugation and NMR data show that the protein is monomeric over a broad protein concentration range. The 324 nm emission maximum of the unique Trp-106 is consistent with a sequestered position of the aromatic residue. Additionally, differential pulse voltammetry characterization indicates an elevated peak potential for Trp-106 when the protein is folded (pH range 7.0-8.5) relative to partly unfolded (pH range 11.4-13.2). The oxidation of Trp-106 is coupled to proton release as shown by a 53 +/- 3 mV/pH unit dependence of the peak potential over the 7.0-8.5 pH range.


Asunto(s)
Oxidación-Reducción , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Dicroismo Circular , Expresión Génica , Espectroscopía de Resonancia Magnética , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Renaturación de Proteína , Temperatura , Tiorredoxinas/química , Triptófano/análisis , Ultracentrifugación
6.
Nucleic Acids Res ; 36(Database issue): D307-13, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17933771

RESUMEN

Proteins containing heme, iron(protoporphyrin IX) and its variants, continue to be one of the most-studied classes of biomolecules due to their diverse range of biological functions. The literature is abundant with reports of structural and functional characterization of individual heme proteins which demonstrate that heme protein reduction potential values, E(m), span the range from -550 mV to +450 mV versus SHE. In order to unite these data for the purposes of global analysis, a new web-based resource of heme protein structure-function relationships is presented: the Heme Protein Database (HPD). This database is the first of its kind to combine heme protein structural classifications including protein fold, heme type and heme axial ligands, with heme protein reduction potential values in a web-searchable format. The HPD is located at http://heme.chem.columbia.edu/heme.php. The data illustrate that heme protein E(m) values are modulated over a 300 mV range by the type of global protein fold, a 600 mV range by the type of porphyrin and an 800 mV range by the axial ligands. Thus, the 1 V range observed in heme protein reduction potential values in biological systems arises from subtle combinations of these various factors.


Asunto(s)
Bases de Datos de Proteínas , Hemoproteínas/química , Electroquímica , Internet , Ligandos , Oxidación-Reducción , Termodinámica
7.
Biochemistry ; 46(50): 14629-37, 2007 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-18031064

RESUMEN

Current studies on the Saccharomyces cerevisiae protein Dap1p have demonstrated a heme-related function within the ergosterol biosynthetic pathway. Here we present data to further the understanding of the role of heme in the proper biological functioning of Dap1p in cellular processes. First, we examined the role of Dap1p in stabilizing the P450 enzyme, Erg11p, a key regulatory protein in ergosterol biosynthesis. Our data indicate that the absence of Dap1p does not affect Erg11p mRNA, protein expression levels, or the protein degradation rates in S. Cerevisaie. Second, in order to probe the role of heme in the biological functioning of Dap1p, we measured ferric and ferrous heme binding affinities for Dap1p and the mutant Dap1pY138F, as well as equilibrium midpoint reduction potentials of the Fe(III)/Fe(II) couples. Our results show that both wild-type and mutant proteins bind heme in a 1:1 fashion, possessing tight ferric heme affinities, KD values of 400 pM and 200 nM, respectively, but exhibiting weak ferrous affinities, 2 and 10 microM, respectively. Additionally, the measured reduction potential of Dap1p, which was found to be -307 mV, is similar to that of other monotyrosinate hemoproteins. Although previous reports show the weaker affinity of Dap1pY138F for ferric heme lowers the production of ergosterol with respect to wild-type Dap1p in S. pombe, we find that Dap1pY138F expression is still sufficient to rescue the growth sensitivity of dap1Delta to fluconazole and methyl methanesulfonate in S. cerevisiae. Various interpretations of these results are discussed with respect to Dap1p function in the cell.


Asunto(s)
Hemo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dicroismo Circular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , Reacción en Cadena de la Polimerasa , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Am Chem Soc ; 129(42): 12815-27, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17902663

RESUMEN

Zinc finger transcription factors represent the largest single class of metalloproteins in the human genome. Binding of Zn(II) to their canonical Cys4, Cys3His1, or Cys2His2 sites results in metal-induced protein folding events required to achieve their proper structure for biological activity. The thermodynamic contribution of Zn(II) in each of these coordination spheres toward protein folding is poorly understood because of the coupled nature of the metal-ligand and protein-protein interactions. Using an unstructured peptide scaffold, GGG, we have employed fluorimetry, potentiometry, and calorimetry to determine the thermodynamics of Zn(II) binding to the Cys4, Cys3His1, and Cys2His2 ligand sets with minimal interference from protein folding effects. The data show that Zn(II) complexation is entropy driven and modulated by proton release. The formation constants for Zn(II)-GGG with a Cys4, Cys3His1, or Cys2His2 site are 5.6 x 10(16), 1.5 x 10(15), or 2.5 x 10(13) M(-1), respectively. Thus, the Zn(II)-Cys4, Zn(II)-Cys3His1, and Zn(II)-Cys2His2 interactions can provide up to 22.8, 20.7, and 18.3 kcal/mol, respectively, in driving force for protein stabilization, folding, and/or assembly at pH values above the ligand pKa values. While the contributions from the three coordination motifs differ by 4.5 kcal/mol in Zn(II) affinity at pH 9.0, they are equivalent at physiological pH, DeltaG = -16.8 kcal/mol or a Ka = 2.0 x 10(12) M(-1). Calorimetric data show that this is due to proton-based enthalpy-entropy compensation between the favorable entropic term from proton release and the unfavorable enthalpic term due to thiol deprotonation. Since protein folding effects have been minimized in the GGG scaffold, these peptides possess nearly the tightest Zn(II) affinities possible for their coordination motifs. The Zn(II) affinities in each coordination motif are compared between the GGG scaffold and natural zinc finger proteins to determine the free energy required to fold the latter. Several proteins have identical Zn(II) affinities to GGG. That is, little, if any, of their Zn(II) binding energy is required to fold the protein, whereas some have affinities weakened by up to 5.7 kcal/mol; i.e., the Zn(II) binding energy is being used to fold the protein.


Asunto(s)
Péptidos/química , Dedos de Zinc , Secuencias de Aminoácidos , Calorimetría/métodos , Cisteína/química , Histidina/química , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Pliegue de Proteína , Espectrometría de Fluorescencia , Termodinámica , Zinc/química
9.
Biochemistry ; 46(12): 3745-58, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17326664

RESUMEN

The current limited understanding of the free energy contributions of metal-protein interactions toward metalloprotein stability is largely due to an inability to separate the energetics of the metal-ligand and protein-protein interactions. In order to elucidate the thermodynamic contribution of a Zn(II)-(S.Cys)4 site toward metalloprotein stability relevant to classic structural Zn(II) sites, the reaction of {Zn(II)(H2O)6}2+ with a minimal, unstructured, tetracysteine 16-mer peptide, GGG, is described. Isothermal titration fluorimetry over the pH range of 4.5 to 9.0 is used to measure the free energy of Zn(II) binding to the model peptide GGG. The data show that, in the absence of proton competition, Zn(II) binds to the Cys4 coordination sphere with a Kd of 60 aM, indicating that the Zn(II)-(S.Cys)4 interaction can provide up to 22.1 kcal mol-1 in driving force for protein stabilization, folding, and/or assembly. Isothermal titration calorimetry shows that Zn(II)-GGG formation is entropy driven because of water release from both the metal and the peptide scaffold. At pH 7.0, where the Zn(II)-GGG Kd value is 8.0 pM, the reaction releases 3.8 protons, is endothermic with DeltaHrxn of +6.4 kcal mol-1, and entropy driven with DeltaSrxn of +72 cal K-1 mol-1. At pH 8.0, where the peptide is partially deprotonated prior to Zn(II) binding, the 1.0 fM Zn(II)-GGG Kd value reflects a Zn(II) complexation reaction involving the release of 2.5 protons, which is slightly exothermic, with DeltaHrxn of -2.0 kcal mol-1, and largely entropy driven, with DeltaSrxn of +61 cal K-1 mol-1. At pH 5.5, where proton competition weakens the Kd to 4.0 microM, only 3.2 protons are released upon Zn(II) binding, the reaction is endothermic, with DeltaHrxn of +7.7 kcal mol-1, and entropy driven, with DeltaSrxn of +51 cal K-1 mol-1. Likely an intrinsic property of Zn(II)-(S.Cys)4 sites, the entropy driven binding of Zn(II) reflects the proton dependent chemical speciation of the Zn(II)-(S.Cys)4 peptide complex and its effects on modulating the dehydration of both the peptide and metal. Furthermore, the Zn(II) binding thermodynamics of a variety of Zn(II) proteins at pH 7.0 reveals the presence of enthalpy-entropy compensation (EEC) phenomena in nature.


Asunto(s)
Cisteína/química , Metaloproteínas/química , Oligopéptidos/química , Protones , Zinc/química , Entropía , Concentración de Iones de Hidrógeno
10.
Biochemistry ; 46(1): 291-305, 2007 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17198400

RESUMEN

To study the engineering requirements for proton pumping in energy-converting enzymes such as cytochrome c oxidase, the thermodynamics and mechanisms of proton-coupled electron transfer in two designed heme proteins are elucidated. Both heme protein maquettes chosen, heme b-[H10A24]2 and heme b-[delta7-His]2, are four-alpha-helix bundles that display pH-dependent heme midpoint potential modulations, or redox-Bohr effects. Detailed equilibrium binding studies of ferric and ferrous heme b with these maquettes allow the individual contributions of heme-protein association, iron-histidine ligation, and heme-protein electrostatics to be elucidated. These data demonstrate that the larger, less well-structured [H10A24]2 binds heme b in both oxidation states tighter than the smaller and more well-structured [Delta7-His]2 due to a stronger porphyrin-protein hydrophobic interaction. The 66 mV (1.5 kcal/mol) difference in their heme reduction potentials observed at pH 8.0 is due mostly to stabilization of ferrous heme in [H10A24]2 relative to [delta7-His]2. The data indicate that porphyrin-protein hydrophobic interactions and heme iron coordination are responsible for the Kd value of 37 nM for the heme b-[delta7-His]2 scaffold, while the affinity of heme b for [H10A24]2 is 20-fold tighter due to a combination of porphyrin-protein hydrophobic interactions, iron coordination, and electrostatic effects. The data also illustrate that the contribution of bis-His coordination to ferrous heme protein affinity is limited, <3.0 kcal/mol. The 1H+/1e- redox-Bohr effect of heme b-[H10A24]2 is due to the greater absolute stabilization of the ferric heme (4.1 kcal/mol) compared to the ferrous heme (1.4 kcal/mol) binding upon glutamic acid deprotonation, i.e., an electrostatic response mechanism. The 2H+/1e- redox-Bohr effect observed for heme b-[delta7-His]2 is due to histidine protonation and histidine dissociation of ferrous heme b upon reduction, i.e., a ligand loss mechanism. These results indicate that the contribution of porphyrin-protein hydrophobic interactions to heme affinity is critical to maintaining the heme bound in both oxidation states and eliciting an electrostatic response from these designed heme protein scaffolds.


Asunto(s)
Hemoproteínas/química , Protones , Termodinámica , Transporte de Electrón , Hemo/química , Hemo/metabolismo , Hemoproteínas/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Espectrofotometría Ultravioleta
11.
Inorg Chem ; 45(25): 9941-58, 2006 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-17140191

RESUMEN

Metal-ligand interactions are critical components of metalloprotein assembly, folding, stability, electrochemistry, and catalytic function. Research over the past 3 decades on the interaction of metals with peptide and protein ligands has progressed from the characterization of amino acid-metal and polypeptide-metal complexes to the design of folded protein scaffolds containing multiple metal cofactors. De novo metalloprotein design has emerged as a valuable tool both for the modular synthesis of these complex metalloproteins and for revealing the fundamental tenets of metalloprotein structure-function relationships. Our research has focused on using the coordination chemistry of de novo designed metalloproteins to probe the interactions of metal cofactors with protein ligands relevant to biological phenomena. Herein, we present a detailed thermodynamic analysis of Fe(II), Co(II), Zn(II), and[4Fe-4S]2(+/+) binding to IGA, a 16 amino acid peptide ligand containing four cysteine residues, H2N-KLCEGG-CIGCGAC-GGW-CONH2. These studies were conducted to delineate the inherent metal-ion preferences of this unfolded tetrathiolate peptide ligand as well as to evaluate the role of the solution pH on metal-peptide complex speciation. The [4Fe-4S]2(+/+)-IGA complex is both an excellent peptide-based synthetic analogue for natural ferredoxins and is flexible enough to accommodate mononuclear metal-ion binding. Incorporation of a single ferrous ion provides the FeII-IGA complex, a spectroscopic model of a reduced rubredoxin active site that possesses limited stability in aqueous buffers. As expected based on the Irving-Williams series and hard-soft acid-base theory, the Co(II) and Zn(II) complexes of IGA are significantly more stable than the Fe(II) complex. Direct proton competition experiments, coupled with determinations of the conditional dissociation constants over a range of pH values, fully define the thermodynamic stabilities and speciation of each MII-IGA complex. The data demonstrate that FeII-IGA and CoII-IGA have formation constant values of 5.0 x 10(8) and 4.2 x 10(11) M-1, which are highly attenuated at physiological pH values. The data also evince that the formation constant for ZnII-IGA is 8.0 x 10(15) M-1, a value that exceeds the tightest natural protein Zn(II)-binding affinities. The formation constant demonstrates that the metal-ligand binding energy of a ZnII(S-Cys)4 site can stabilize a metalloprotein by -21.6 kcal/mol. Rigorous thermodynamic analyses such as those demonstrated here are critical to current research efforts in metalloprotein design, metal-induced protein folding, and metal-ion trafficking.


Asunto(s)
Metaloproteínas/química , Péptidos/química , Compuestos de Sulfhidrilo/química , Zinc/química , Sitios de Unión , Cationes Bivalentes , Cobalto/química , Cisteína/química , Concentración de Iones de Hidrógeno , Inmunoglobulina A/química , Hierro/química , Ligandos , Análisis Espectral , Relación Estructura-Actividad , Termodinámica
12.
Inorg Chem ; 45(25): 10016-8, 2006 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-17140197

RESUMEN

A new method for reliably measuring longitudinal relaxation rates for severely hyperfine-shifted NMR signals in aqueous solutions is presented. The method is illustrated for a well-defined cobalt tetracysteinate, with relevance to cobalt-substituted metalloproteins. The relaxation measurements are indicative of asymmetric electronic relaxation of the high-spin Co(II) ion.

13.
Biochemistry ; 45(41): 12530-8, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17029408

RESUMEN

Heme a is a redox cofactor unique to cytochrome c oxidases and vital to aerobic respiration. Heme a differs from the more common heme b by two chemical modifications, the C-8 formyl group and the C-2 hydroxyethylfarnesyl group. The effects of these porphyrin substituents on ferric and ferrous heme binding and electrochemistry were evaluated in a designed heme protein maquette. The maquette scaffold chosen, [Delta7-H3m](2), is a four-alpha-helix bundle that contains two bis(3-methyl-l-histidine) heme binding sites with known absolute ferric and ferrous heme b affinities. Hemes b, o, o+16, and heme a, those involved in the biosynthesis of heme a, were incorporated into the bis(3-methyl-l-histidine) heme binding sites in [Delta7-H3m](2). Spectroscopic analyses indicate that 2 equiv of each heme binds to [Delta7-H3m](2), as designed. Equilibrium binding studies of the hemes with the maquette demonstrate the tight affinity for hemes containing the C-2 hydroxyethylfarnesyl group in both the ferric and ferrous forms. Coupled with the measured equilibrium midpoint potentials, the data indicate that the hydroxyethylfarnesyl group stabilizes the binding of both ferrous and ferric heme by at least 6.3 kcal/mol via hydrophobic interactions. The data also demonstrate that the incorporation of the C-8 formyl substituent in heme a results in a 179 mV, or 4.1 kcal/mol, positive shift in the heme reduction potential relative to heme o due to the destabilization of ferric heme binding relative to ferrous heme binding. The two substituents appear to counterbalance each other to provide for tighter heme a affinity relative to heme b in both the ferrous and ferric forms by at least 6.3 and 2.1 kcal/mol, respectively. These results also provide a rationale for the reaction sequence observed in the biosynthesis of heme a.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Hemo/análogos & derivados , Hemoproteínas/química , Hemoproteínas/metabolismo , Animales , Dominio Catalítico , Bovinos , Electroquímica , Hemo/química , Técnicas In Vitro , Cinética , Modelos Moleculares , Oxidación-Reducción , Termodinámica
15.
Inorg Chem ; 45(12): 4685-94, 2006 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-16749832

RESUMEN

Heme a, the metalloporphyrin cofactor unique to cytochrome c oxidases, differs from the more common heme b by two chemical modifications, a C-2 hydroxyethylfarnesyl group and a C-8 formyl group. To elucidate a role of the C-8 formyl group, we compare the heme affinity, spectroscopy, and electrochemistry of a heme a mimic, Fe(diacetyldeuterioporphyrin IX) or Fe(DADPIX), with heme b, Fe(protoporphryrin IX) or Fe(PPIX), incorporated into a designed heme protein. The [Delta7-H3m]2 protein ligand, or maquette, selected for this study contains two equivalent bis-(3-methyl-L-histidine) heme binding sites within a four-alpha-helix bundle scaffold. The spectroscopic data on Fe(PPIX) and Fe(DADPIX) bound to [Delta7-H3m]2 demonstrate that these complexes are excellent synthetic analogues for natural cytochromes b and a, respectively. Comparison of the spectroscopic, electrochemical, and equilibrium thermodynamic data measured for the Fe(PPIX)-[Delta7-H3m]2 maquette with the previously reported Fe(PPIX)-[Delta7-His]2 complex demonstrates that changing the heme axial ligands to 3-methyl-L-histidine from L-histidine does not alter the resulting heme protein properties significantly in either oxidation state. Heme binding studies demonstrate that [Delta7-H3m]2 binds two ferrous Fe(DADPIX) or Fe(PPIX) moieties with similar dissociation constant values. However, in the ferric state, the data show that [Delta7-H3m]2 only binds a single Fe(DADPIX) and that one 2500-fold weaker than oxidized Fe(PPIX). The data demonstrate that the 4.6 kcal mol(-1) weakened affinity of [Delta7-H3m]2 for oxidized Fe(DADPIX) results in the majority of the 160 mV, 3.7 kcal mol(-1), positive shift in the heme reduction potential relative to Fe(PPIX). These data indicate that a role of the formyl group on heme a is to raise the iron reduction potential, thus making it a better electron acceptor, but that it does so by destabilizing the affinity of bis-imidazole sites for the ferric state.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/análogos & derivados , Dicroismo Circular , Cristalografía por Rayos X , Electroquímica , Electrones , Compuestos Férricos/química , Compuestos Ferrosos/química , Hemo/química , Indicadores y Reactivos , Peso Molecular , Oxidación-Reducción , Péptidos/química , Porfirinas/química , Potenciometría , Desnaturalización Proteica , Estructura Secundaria de Proteína , Espectrofotometría Ultravioleta , Espectrometría Raman
16.
Nature ; 439(7078): 879-84, 2006 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-16482161

RESUMEN

Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coli AlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by S(N)2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(II) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 A. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , ARN/metabolismo , Alquilación , Anaerobiosis , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Docilidad , Conformación Proteica
17.
Inorg Chem ; 43(26): 8218-20, 2004 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-15606161

RESUMEN

The substitution of 1-methyl-l-histidine for the histidine heme ligands in a de novo designed four-alpha-helix bundle scaffold results in conversion of a six-coordinate cytochrome maquette into a self-assembled five-coordinate mono-(1-methyl-histidine)-ligated heme as an initial maquette for the dioxygen carrier protein myoglobin. UV-vis, magnetic circular dichroism, and resonance Raman spectroscopies demonstrate the presence of five-coordinate mono-(1-methyl-histidine) ligated ferrous heme spectroscopically similar to deoxymyoglobin. Thermodynamic analysis of the ferric and ferrous heme dissociation constants indicates greater destabilization of the ferric state than the ferrous state. The ferrous heme protein reacts with carbon monoxide to form a (1-methyl-histidine)-Fe(II)(heme)-CO complex; however, reaction with dioxygen leads to autoxidation and ferric heme dissociation. These results indicate that negative protein design can be used to generate a five-coordinate heme within a maquette scaffold.


Asunto(s)
Hemoproteínas/química , Histidina/química , Mioglobina/análogos & derivados , Mioglobina/química , Monóxido de Carbono/química , Dicroismo Circular , Hierro/química , Metilhistidinas/química , Modelos Moleculares , Espectrofotometría Ultravioleta , Espectrometría Raman , Termodinámica
18.
Inorg Chem ; 43(16): 4793-5, 2004 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-15285646

RESUMEN

l-Penicillamine (Pen) has been investigated as a ligand for metalloprotein design by examining the binding of Co(II) to the sequence NH(2)-KL(Pen)EGG.(Pen)IG(Pen)GA(Pen).GGW-CONH(2). For comparison, we have studied Co(II) binding to the analogous sequence with Cys ligands, the ferredoxin maquette ligand IGA that was originally designed to bind a [4Fe-4S] cluster. The Co(II) affinity and UV-vis spectroscopic properties of IGA indicate formation of a pseudotetrahedral tetrathiolate ligated Co(II). In contrast, IGA-Pen showed formation of a pseudotetrahedral complex with Co(II) bound by three Pen ligands and an exogenous H(2)O. EXAFS data on both Co(II) complexes confirms not only the proposed primary coordination spheres but also shows six Co(II)-C(beta) methyl group distances in Co(II)-IGA-Pen. These results demonstrate that ligand sterics in simple peptides can be designed to provide asymmetric coordination spheres such as those commonly observed in natural metalloproteins.


Asunto(s)
Cobalto/química , Cisteína/química , Metaloproteínas/química , Modelos Moleculares , Penicilamina/química , Secuencia de Aminoácidos , Ligandos , Estructura Molecular , Conformación Proteica , Espectrofotometría Ultravioleta
19.
J Inorg Biochem ; 98(5): 727-32, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15134918

RESUMEN

We have examined the Co(II) and Zn(II) affinity of the prototype ferredoxin maquette ligand, NH(2)-KLCEGG.CIACGAC.GGW-CONH2 (IAA), which was originally designed to bind a [4Fe-4S] cluster. UV-Vis spectroscopy demonstrates tight 1:1 complex formation between Co(II) and IAA. The intensity of the S-->Co(II) charge transfer bands at 304 and 340 nm and the ligand field bands between 630 and 728 nm indicate Co(II) coordination by the four cysteine thiolates of IAA in a pseudo-tetrahedral geometry. A dissociation constant value of 5.3 microM was determined for the Co(II)-IAA complex at pH 6.5. Zn(II) readily displaces Co(II) from IAA as evinced by loss of the Co(II) spectral features. The dissociation constant for Zn(II), 20 pM at pH 6.5, was determined be competition experiments with Co(II)-IAA. These results demonstrate that the ferredoxin maquette ligand is an excellent ligand for Zn(II).


Asunto(s)
Ferredoxinas/química , Cobalto/química , Concentración de Iones de Hidrógeno , Ligandos , Metaloproteínas/química , Modelos Moleculares , Oligopéptidos/química , Unión Proteica , Proteínas Recombinantes/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA