Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000682

RESUMEN

Continuous carbon fiber-reinforced (CCFR) thermoset composites have received significant attention due to their excellent mechanical and thermal properties. The implementation of 3D printing introduces cost-effectiveness and design flexibility into their manufacturing processes. The light-assisted 3D printing process shows promise for manufacturing CCFR composites using low-viscosity thermoset resin, which would otherwise be unprintable. Because of the lack of shape-retaining capability, 3D printing of various shapes is challenging with low-viscosity thermoset resin. This study demonstrated an overshoot-associated algorithm for 3D printing various shapes using low-viscosity thermoset resin and continuous carbon fiber. Additionally, 3D-printed unidirectional composites were mechanically characterized. The printed specimen exhibited tensile strength of 390 ± 22 MPa and an interlaminar strength of 38 ± 1.7 MPa, with a fiber volume fraction of 15.7 ± 0.43%. Void analysis revealed that the printed specimen contained 5.5% overall voids. Moreover, the analysis showed the presence of numerous irregular cylindrical-shaped intra-tow voids, which governed the tensile properties. However, the inter-tow voids were small and spherical-shaped, governing the interlaminar shear strength. Therefore, the printed specimens showed exceptional interlaminar shear strength, and the tensile strength had the potential to increase further by improving the impregnation of polymer resin within the fiber.

2.
Polymers (Basel) ; 15(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36987165

RESUMEN

Additive manufacturing (AM) is one of the fastest-growing manufacturing technologies in modern times. One of the major challenges in the application of 3D-printed polymeric objects is expanding the applications to structural components, as they are often limited by their mechanical and thermal properties. To enhance the mechanical properties of 3D-printed thermoset polymer objects, reinforcing the polymer with continuous carbon fiber (CF) tow is an expanding direction of research and development. A 3D printer was constructed capable of printing with a continuous CF-reinforced dual curable thermoset resin system. Mechanical performance of the 3D-printed composites varied with the utilization of different resin chemistries. Three different commercially available violet light curable resins were mixed with a thermal initiator to improve curing by overcoming the shadowing effect of violet light by the CF. The resulting specimens' compositions were analyzed, and then the specimens were mechanically characterized for comparison in tensile and flexural performance. The 3D-printed composites' compositions were correlated to the printing parameters and resin characteristics. Slight enhancements in tensile and flexural properties from some commercially available resins over others appeared to be the result of better wet-out and adhesion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA