Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Healthc Inform Res ; 8(3): 555-575, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39131103

RESUMEN

Electronic Health Records (EHRs) play a crucial role in shaping predictive are models, yet they encounter challenges such as significant data gaps and class imbalances. Traditional Graph Neural Network (GNN) approaches have limitations in fully leveraging neighbourhood data or demanding intensive computational requirements for regularisation. To address this challenge, we introduce CliqueFluxNet, a novel framework that innovatively constructs a patient similarity graph to maximise cliques, thereby highlighting strong inter-patient connections. At the heart of CliqueFluxNet lies its stochastic edge fluxing strategy - a dynamic process involving random edge addition and removal during training. This strategy aims to enhance the model's generalisability and mitigate overfitting. Our empirical analysis, conducted on MIMIC-III and eICU datasets, focuses on the tasks of mortality and readmission prediction. It demonstrates significant progress in representation learning, particularly in scenarios with limited data availability. Qualitative assessments further underscore CliqueFluxNet's effectiveness in extracting meaningful EHR representations, solidifying its potential for advancing GNN applications in healthcare analytics.

2.
PLOS Digit Health ; 2(11): e0000306, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37910466

RESUMEN

Urine culture is often considered the gold standard for detecting the presence of bacteria in the urine. Since culture is expensive and often requires 24-48 hours, clinicians often rely on urine dipstick test, which is considerably cheaper than culture and provides instant results. Despite its ease of use, urine dipstick test may lack sensitivity and specificity. In this paper, we use a real-world dataset consisting of 17,572 outpatient encounters who underwent urine cultures, collected between 2015 and 2021 at a large multi-specialty hospital in Abu Dhabi, United Arab Emirates. We develop and evaluate a simple parsimonious prediction model for positive urine cultures based on a minimal input set of ten features selected from the patient's presenting vital signs, history, and dipstick results. In a test set of 5,339 encounters, the parsimonious model achieves an area under the receiver operating characteristic curve (AUROC) of 0.828 (95% CI: 0.810-0.844) for predicting a bacterial count ≥ 105 CFU/ml, outperforming a model that uses dipstick features only that achieves an AUROC of 0.786 (95% CI: 0.769-0.806). Our proposed model can be easily deployed at point-of-care, highlighting its value in improving the efficiency of clinical workflows, especially in low-resource settings.

3.
Biomedicines ; 11(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37371844

RESUMEN

The spread of machine learning models, coupled with by the growing adoption of electronic health records (EHRs), has opened the door for developing clinical decision support systems. However, despite the great promise of machine learning for healthcare in low-middle-income countries (LMICs), many data-specific limitations, such as the small size and irregular sampling, hinder the progress in such applications. Recently, deep generative models have been proposed to generate realistic-looking synthetic data, including EHRs, by learning the underlying data distribution without compromising patient privacy. In this study, we first use a deep generative model to generate synthetic data based on a small dataset (364 patients) from a LMIC setting. Next, we use synthetic data to build models that predict the onset of hospital-acquired infections based on minimal information collected at patient ICU admission. The performance of the diagnostic model trained on the synthetic data outperformed models trained on the original and oversampled data using techniques such as SMOTE. We also experiment with varying the size of the synthetic data and observe the impact on the performance and interpretability of the models. Our results show the promise of using deep generative models in enabling healthcare data owners to develop and validate models that serve their needs and applications, despite limitations in dataset size.

4.
Intell Based Med ; 6: 100065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721825

RESUMEN

Clinical evidence suggests that some patients diagnosed with coronavirus disease 2019 (COVID-19) experience a variety of complications associated with significant morbidity, especially in severe cases during the initial spread of the pandemic. To support early interventions, we propose a machine learning system that predicts the risk of developing multiple complications. We processed data collected from 3,352 patient encounters admitted to 18 facilities between April 1 and April 30, 2020, in Abu Dhabi (AD), United Arab Emirates. Using data collected during the first 24 h of admission, we trained machine learning models to predict the risk of developing any of three complications after 24 h of admission. The complications include Secondary Bacterial Infection (SBI), Acute Kidney Injury (AKI), and Acute Respiratory Distress Syndrome (ARDS). The hospitals were grouped based on geographical proximity to assess the proposed system's learning generalizability, AD Middle region and AD Western & Eastern regions, A and B, respectively. The overall system includes a data filtering criterion, hyperparameter tuning, and model selection. In test set A, consisting of 587 patient encounters (mean age: 45.5), the system achieved a good area under the receiver operating curve (AUROC) for the prediction of SBI (0.902 AUROC), AKI (0.906 AUROC), and ARDS (0.854 AUROC). Similarly, in test set B, consisting of 225 patient encounters (mean age: 42.7), the system performed well for the prediction of SBI (0.859 AUROC), AKI (0.891 AUROC), and ARDS (0.827 AUROC). The performance results and feature importance analysis highlight the system's generalizability and interpretability. The findings illustrate how machine learning models can achieve a strong performance even when using a limited set of routine input variables. Since our proposed system is data-driven, we believe it can be easily repurposed for different outcomes considering the changes in COVID-19 variants over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA