Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34940790

RESUMEN

Phospholipase D (PLD)2 via its enzymatic activity regulates cell proliferation and migration and thus is implicated in cancer. However, the role of PLD2 in obesity and type 2 diabetes has not previously been investigated. Here, we show that during diet-induced thermogenesis and obesity, levels of PLD2 but not PLD1 in adipose tissue are inversely related with uncoupling protein 1, a key thermogenic protein. We demonstrate that the thermogenic program in adipose tissue is significantly augmented in mice with adipocyte-specific Pld2 deletion or treated with a PLD2-specific inhibitor and that these mice are resistant to high fat diet-induced obesity, glucose intolerance, and insulin resistance. Mechanistically, we show that Pld2 deletion in adipose tissue or PLD2 pharmacoinhibition acts via p62 to improve mitochondrial quality and quantity in adipocytes. Thus, PLD2 inhibition is an attractive therapeutic approach for obesity and type 2 diabetes by resolving defects in diet-induced thermogenesis.


Asunto(s)
Adipocitos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfolipasa D/genética , Termogénesis/genética , Animales , Biomarcadores , Glucemia , Dieta Alta en Grasa , Metabolismo Energético , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Inmunohistoquímica , Resistencia a la Insulina , Masculino , Ratones , Ratones Noqueados , Mitocondrias/ultraestructura , Obesidad/etiología , Obesidad/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Sci Rep ; 9(1): 7242, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076618

RESUMEN

We examined the role of phospholipase D2 (PLD2) on acetaminophen (APAP)-induced acute liver injury using a PLD2 inhibitor (CAY10594). 500 mg/kg of APAP challenge caused acute liver damage. CAY10594 administration markedly blocked the acute liver injury in a dose-dependent manner, showing almost complete inhibition with 8 mg/kg of CAY10594. During the pathological progress of acute liver injury, GSH levels are decreased, and this is significantly recovered upon the administration of CAY10594 at 6 hours post APAP challenge. GSK-3ß (Serine 9)/JNK phosphorylation is mainly involved in APAP-induced liver injury. CAY10594 administration strongly blocked GSK-3ß (Serine 9)/JNK phosphorylation in the APAP-induced acute liver injury model. Consistently, sustained JNK activation in the cytosol and mitochondria from hepatocytes were also decreased in CAY10594-treated mice. Many types of immune cells are also implicated in APAP-induced liver injury. However, neutrophil and monocyte populations were not different between vehicle- and CAY10594-administered mice which are challenged with APAP. Therapeutic administration of CAY10594 also significantly attenuated liver damage caused by the APAP challenge, eliciting an enhanced survival rate. Taken together, these results indicate that PLD2 is involved in the intrinsic response pathway of hepatocytes driving the pathogenesis of APAP-induced acute liver injury, and PLD2 may therefore represent an important therapeutic target for patients with drug-induced liver injury.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Med Food ; 22(2): 178-185, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30657431

RESUMEN

Pleurotus eryngii var. ferulae (PEF) is traditionally used in the prevention and treatment of lifestyle-related diseases. In this study, we investigated the ability of PEF extract to prevent obesity and metabolic diseases and explored the underlying mechanism. Mice were fed a high-fat diet (HFD) containing PEF extract for 12 weeks, and their body weight, adipose tissue and liver weights, and lipid profiles and blood glucose levels, were monitored. Fecal triglyceride (TG) levels were also measured and olive oil-loading tests were performed. Furthermore, the effect of PEF extract on pancreatic lipase (PL) activity was examined in vitro. Treatment with PEF extract for 12 weeks resulted in a significant decrease in the HFD-induced increases in body weight, white adipose tissue weight, liver weights, and lipid profiles, and improved glucose tolerance and insulin sensitivity. To assess the mechanism underlying the effect of PEF extract on obesity and diabetes, we investigated its role in inhibiting lipid absorption. Consumption of an HFD containing PEF extract significantly increased the TG level in feces compared with the controls, suggesting inhibition of TG absorption in the digestive tract. Furthermore, PEF extract suppressed the increase in serum TG levels resulting from oral administration of a lipid emulsion to mice, confirming inhibition of TG absorption. Moreover, PEF extract inhibited PL activity in vitro. Our combined results indicate that the anti-obesity and antidiabetic effect of PEF extract in mice fed an HFD may be caused by inhibition of lipid absorption as a result of reduced PL activity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Lipasa/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/metabolismo , Páncreas/enzimología , Extractos Vegetales/farmacología , Pleurotus , Tejido Adiposo Blanco/metabolismo , Animales , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/prevención & control , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Heces , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Resistencia a la Insulina , Absorción Intestinal/efectos de los fármacos , Lípidos/administración & dosificación , Lípidos/sangre , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/prevención & control , Fitoterapia , Extractos Vegetales/uso terapéutico , Triglicéridos/sangre , Triglicéridos/metabolismo
4.
Cancer Genomics Proteomics ; 15(6): 485-497, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30343282

RESUMEN

BACKGROUND: There are limitations to current colorectal cancer (CRC)-specific diagnostic methods and therapies. Tumorigenesis proceeds because of interaction between cancer cells and various surrounding cells; discovering new molecular mediators through studies of the CRC secretome is a promising approach for the development of CRC diagnostics and therapies. MATERIALS AND METHODS: A comparative secretomic analysis was performed using primary and metastatic human isogenic CRC cells. Proliferation was determined by MTT and thymidine incorporation assay, migration was determined by wound-healing assay (ELISA). The level of palmitoleoyl-protein carboxylesterase (NOTUM) in plasma from patients with CRC was determined by enzyme-linked immunosorbent assay. RESULTS: NOTUM expression was increased in metastatic cells. Proliferation was suppressed by inhibiting expression of NOTUM. Knockdown of NOTUM genes inhibited proliferation as well as migration, with possible involvement of p38 and c-JUN N-terminal kinase in this process. The result was verified in patients with CRC. CONCLUSION: NOTUM may be a new candidate for diagnostics and therapy of CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales/enzimología , Esterasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Esterasas/genética , Técnicas de Silenciamiento del Gen , Humanos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética
5.
Exp Mol Med ; 50(8): 1-9, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115904

RESUMEN

The gastrointestinal tract is a specialized organ in which dynamic interactions between host cells and the complex environment occur in addition to food digestion. Together with the chemical barrier of the mucosal layer and the cellular immune system, the epithelial cell layer performs a pivotal role as the first physical barrier against external factors and maintains a symbiotic relationship with commensal bacteria. The tight junction proteins, including occludin, claudins, and zonula occludens, are crucial for the maintenance of epithelial barrier integrity. To allow the transport of essential molecules and restrict harmful substances, the intracellular signaling transduction system and a number of extracellular stimuli such as cytokines, small GTPases, and post-translational modifications dynamically modulate the tight junction protein complexes. An imbalance in these regulations leads to compromised barrier integrity and is linked with pathological conditions. Despite the obscurity of the causal relationship, the loss of barrier integrity is considered to contribute to inflammatory bowel disease, obesity, and metabolic disorders. The elucidation of the role of diseases in barrier integrity and the underlying regulatory mechanisms have improved our understanding of the intestinal barrier to allow the development of novel and potent therapeutic approaches.


Asunto(s)
Intestinos/patología , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Enfermedades Intestinales/patología , Mucosa Intestinal/patología , Proteínas de Uniones Estrechas/metabolismo
6.
Exp Mol Med ; 50(2): e450, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29472701

RESUMEN

The gut microbiota has an important role in the gut barrier, inflammation and metabolic functions. Studies have identified a close association between the intestinal barrier and metabolic diseases, including obesity and type 2 diabetes (T2D). Recently, Akkermansia muciniphila has been reported as a beneficial bacterium that reduces gut barrier disruption and insulin resistance. Here we evaluated the role of A. muciniphila-derived extracellular vesicles (AmEVs) in the regulation of gut permeability. We found that there are more AmEVs in the fecal samples of healthy controls compared with those of patients with T2D. In addition, AmEV administration enhanced tight junction function, reduced body weight gain and improved glucose tolerance in high-fat diet (HFD)-induced diabetic mice. To test the direct effect of AmEVs on human epithelial cells, cultured Caco-2 cells were treated with these vesicles. AmEVs decreased the gut permeability of lipopolysaccharide-treated Caco-2 cells, whereas Escherichia coli-derived EVs had no significant effect. Interestingly, the expression of occludin was increased by AmEV treatment. Overall, these results imply that AmEVs may act as a functional moiety for controlling gut permeability and that the regulation of intestinal barrier integrity can improve metabolic functions in HFD-fed mice.


Asunto(s)
Permeabilidad de la Membrana Celular , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Uniones Estrechas/metabolismo , Verrucomicrobia/metabolismo , Animales , Biodiversidad , Biomarcadores , Células CACO-2 , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Heces/microbiología , Microbioma Gastrointestinal , Humanos , Ratones
7.
Sci Rep ; 7(1): 1573, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484281

RESUMEN

Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal-specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis.


Asunto(s)
Colitis/metabolismo , Colitis/patología , Células Epiteliales/metabolismo , Eliminación de Gen , Intestinos/patología , Ocludina/metabolismo , Fosfolipasa D/genética , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Dinitrofluorobenceno/análogos & derivados , Regulación hacia Abajo , Células HT29 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Especificidad de Órganos , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Familia-src Quinasas/metabolismo
8.
BMB Rep ; 49(3): 191-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26818087

RESUMEN

Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis and critical for normal embryonic development and repair of pathophysiological conditions in adults. Although phospholipase D (PLD) activity has been implicated in angiogenic processes, its role in VEGF signaling during angiogenesis in mammals is unclear. Here, we found that silencing of PLD2 by siRNA blocked VEGF-mediated signaling in immortalized human umbilical vein endothelial cells (iHUVECs). Also, VEGF-induced endothelial cell survival, proliferation, migration, and tube formation were inhibited by PLD2 silencing. Furthermore, while Pld2-knockout mice exhibited normal development, loss of PLD2 inhibited VEGF-mediated ex vivo angiogenesis. These findings suggest that PLD2 functions as a key mediator in the VEGF-mediated angiogenic functions of endothelial cells. [BMB Reports 2016; 49(3): 191-196].


Asunto(s)
Neovascularización Fisiológica , Fosfolipasa D/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Aorta/fisiología , Línea Celular Transformada , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isoenzimas/metabolismo , Ratones Noqueados , Fosfolipasa D/deficiencia , Transducción de Señal
9.
Adv Biol Regul ; 61: 42-6, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26695710

RESUMEN

Phospholipase D2 (PLD2) is a lipid-signaling enzyme that produces the signaling molecule phosphatidic acid (PA) by catalyzing the hydrolysis of phosphatidylcholine (PC). The molecular characteristics of PLD2, the mechanisms of regulation of its activity, its functions in the signaling pathway involving PA and binding partners, and its role in cellular physiology have been extensively studied over the past decades. Although several potential roles of PLD2 have been proposed based on the results of molecular and cell-based studies, the pathophysiological functions of PLD2 in vivo have not yet been fully investigated at the organismal level. Here, we address accumulated evidences that provide insight into the role of PLD2 in human disease. We summarize recent studies using animal models that provide direct evidence of the function of PLD2 in several pathological conditions such as vascular disease, immunological disease, and neurological disease. In light of the use of recently developed PLD2-specific inhibitors showing potential in alleviating pathological conditions, improving our understanding of the role of PLD2 in human disease would be necessary to target the regulation of PLD2 activity as a therapeutic strategy.


Asunto(s)
Enfermedades del Sistema Inmune/enzimología , Neoplasias/enzimología , Enfermedades del Sistema Nervioso/enzimología , Inhibidores de Fosfolipasa A2/uso terapéutico , Fosfolipasa D/genética , Enfermedades Vasculares/enzimología , Animales , Antineoplásicos/uso terapéutico , Fármacos Cardiovasculares/uso terapéutico , Regulación de la Expresión Génica , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/patología , Factores Inmunológicos/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Fármacos Neuroprotectores/uso terapéutico , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/metabolismo , Transducción de Señal , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología
10.
Cell Signal ; 27(12): 2363-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26341143

RESUMEN

Phospholipase D (PLD) is one of the key enzymes to mediate a variety of cellular phenomena including endocytosis, actin rearrangement, proliferation, differentiation, and migration. Dynamin as a PLD-interacting partner is a large GTP binding protein that has been considered a mechanochemical enzyme involved in endocytosis by hydrolyzing GTP. Although both PLD and dynamin have been implicated in the regulation of actin cytoskeleton, it is not known how they have a link to regulate fibronectin (FN)-induced cell spreading. Furthermore, it is unknown whether dynamin can work as a GTP-dependent regulator through its interaction with other proteins. Here, we demonstrate that PLD can be regulated by dynamin in a GTP-dependent manner and that this is critical for FN-mediated cell spreading. First, we verified that GTP-loaded dynamin can mediate the cell spreading by FN by using dynamin's GTP binding deficient mutant (K44A). Also, we confirmed that blocking the PLD activity inhibited FN-induced cell spreading, not cell adhesion. Moreover, PLD interacted with dynamin in a GTP-dependent manner in FN signaling, and this interaction was crucial for FN-induced PLD activation and cell spreading. Also, we found that PLD mutant (R128K) that didn't have GAP activity increased the GTP-dependent interaction between PLD and dynamin; it also increased PLD activity and cell spreading. These findings suggest that the observed increase in PLD activity was through boosting the binding of PLD with dynamin and it facilitated FN-induced cell spreading. These results imply that GTP-loaded dynamin, like a small GTPase could mediate a "switch on" signaling via interaction with PLD that has a role as an effector.


Asunto(s)
Dinaminas/metabolismo , Fibronectinas/fisiología , Guanosina Trifosfato/fisiología , Fosfolipasa D/metabolismo , Adhesión Celular , Forma de la Célula , Activación Enzimática , Células HEK293 , Humanos
11.
J Exp Med ; 212(9): 1381-90, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26282875

RESUMEN

We determined the function of phospholipase D2 (PLD2) in host defense in highly lethal mouse models of sepsis using PLD2(-/-) mice and a PLD2-specific inhibitor. PLD2 deficiency not only increases survival but also decreases vital organ damage during experimental sepsis. Production of several inflammatory cytokines (TNF, IL-1ß, IL-17, and IL-23) and the chemokine CXCL1, as well as cellular apoptosis in immune tissues, kidney, and liver, are markedly decreased in PLD2(-/-) mice. Bactericidal activity is significantly increased in PLD2(-/-) mice, which is mediated by increased neutrophil extracellular trap formation and citrullination of histone 3 through peptidylarginine deiminase activation. Recruitment of neutrophils to the lung is markedly increased in PLD2(-/-) mice. Furthermore, LPS-induced induction of G protein-coupled receptor kinase 2 (GRK2) and down-regulation of CXCR2 are markedly attenuated in PLD2(-/-) mice. A CXCR2-selective antagonist abolishes the protection conferred by PLD2 deficiency during experimental sepsis, suggesting that enhanced CXCR2 expression, likely driven by GRK2 down-regulation in neutrophils, promotes survival in PLD2(-/-) mice. Furthermore, adoptively transferred PLD2(-/-) neutrophils significantly protect WT recipients against sepsis-induced death compared with transferred WT neutrophils. We suggest that PLD2 in neutrophils is essential for the pathogenesis of experimental sepsis and that pharmaceutical agents that target PLD2 may prove beneficial for septic patients.


Asunto(s)
Regulación hacia Abajo , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Fosfolipasa D/metabolismo , Receptores de Interleucina-8B/biosíntesis , Sepsis/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Trampas Extracelulares/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Neutrófilos/patología , Fosfolipasa D/genética , Receptores de Interleucina-8B/genética , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/patología
12.
Cell Signal ; 27(9): 1873-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25982508

RESUMEN

Apolipoprotein a1, which is a major lipoprotein component of high-density lipoprotein (HDL), was reported to decrease plasma glucose in type 2 diabetes. Although recent studies also have shown that apolipoprotein a1 is involved in triglyceride (TG) metabolism, the mechanisms by which apolipoprotein a1 modulates TG levels remain largely unexplored. Here we demonstrated that apolipoprotein a1 increased mitochondrial DNA and mitochondria contents through sustained AMPK activation in myotubes. This resulted in enhanced fatty acid oxidation and attenuation of free fatty acid-induced insulin resistance features in skeletal muscle. The increment of mitochondria was mediated through induction of transcription factors, such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear transcription factor 1 (NRF-1). The inhibition of AMPK by a pharmacological agent inhibited the induction of mitochondrial biogenesis. Increase of AMPK phosphorylation by apolipoprotein a1 occurs through activation of upstream kinase LKB1. Finally, we confirmed that scavenger receptor Class B, type 1 (SR-B1) is an important receptor for apolipoprotein a1 in stimulating AMPK pathway and mitochondrial biogenesis. Our study suggests that apolipoprotein a1 can alleviate obesity related metabolic disease by inducing AMPK dependent mitochondrial biogenesis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apolipoproteína A-I/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Apolipoproteína A-I/genética , Línea Celular , Ratones , Mitocondrias Hepáticas/genética , Mitocondrias Musculares/genética , Factor Nuclear 1 de Respiración/genética , Factor Nuclear 1 de Respiración/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Cell Signal ; 27(7): 1439-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25862954

RESUMEN

Vascular endothelial growth factor-A (VEGF-A) is a master regulator of angiogenesis that controls several angiogenic processes in endothelial cells. However, the detailed mechanisms of VEGF-A responsible for pleiotropic functions and crosstalk with other signaling pathways have not been fully understood. Here, we found that VEGF-A utilizes the connective tissue growth factor (CTGF)/formyl peptide receptor-like 1 (FPRL1) axis as one of its mediators in angiogenesis. Using a proteomic approach, we found increased secretion of a matricellular protein, CTGF, from VEGF-A-treated human umbilical vein endothelial cells (HUVECs). Then, we studied the effect of CTGF binding to FPRL1 in VEGF-A-induced angiogenesis. CTGF directly binds to FPRL1 through a linker region and activates the downstream signals of FPRL1, such as increase in extracellular signal-regulated kinase (ERK) phosphorylation and intracellular Ca(2+) concentration. We found that linker region-induced FPRL1 activation promotes the migration and network formation of HUVECs, while disruption of FPRL1 inhibits VEGF-A-induced HUVEC migration and network formation. In addition, similar results were observed by the chorioallantoic membrane (CAM) assay based evaluation of angiogenesis in vivo. To summarize, our data reveal a novel working model for VEGF-A-induced angiogenesis via the VEGF-A/CTGF/FPRL1 axis that might prolong and enhance the signals initiated from VEGF-A.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Secuencia de Aminoácidos , Factor de Crecimiento del Tejido Conjuntivo/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Datos de Secuencia Molecular , Fosforilación/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Formil Péptido/genética , Receptores de Lipoxina/antagonistas & inhibidores , Receptores de Lipoxina/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
14.
Mol Cell Proteomics ; 14(4): 882-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616869

RESUMEN

Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.


Asunto(s)
Anexina A1/metabolismo , Resistencia a la Insulina , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/farmacología , Proteómica/métodos , Receptores de Formil Péptido/agonistas , Animales , Anexina A1/agonistas , Línea Celular , Biología Computacional , Medios de Cultivo Condicionados/farmacología , Dieta Alta en Grasa , Insulina/farmacología , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Oligopéptidos/farmacología , Ratas , Receptores de Formil Péptido/metabolismo
15.
PLoS One ; 9(9): e108771, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25250787

RESUMEN

5' AMP-activated protein kinase (AMPK) is a highly conserved serine-threonine kinase that regulates energy expenditure by activating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. Therefore AMPK activators are considered to be drug targets for treatment of metabolic diseases such as diabetes mellitus. To identify novel AMPK activators, we screened xanthene derivatives. We determined that the AMPK activators 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-nitro-phenyl)-thioureido]-ethyl}-amide (Xn) and 9H-xanthene-9-carboxylic acid {2,2,2-trichloro-1-[3-(3-cyano-phenyl)-thioureido]-ethyl}-amide (Xc) elevated glucose uptake in L6 myotubes by stimulating translocation of glucose transporter type 4 (GLUT4). Treatment with the chemical AMPK inhibitor compound C and infection with dominant-negative AMPKa2-virus inhibited AMPK phosphorylation and glucose uptake in myotubes induced by either Xn or Xc. Of the two major upstream kinases of AMPK, we found that Xn and Xc showed LKB1 dependency by knockdown of STK11, an ortholog of human LKB1. Single intravenous administration of Xn and Xc to high-fat diet-induced diabetic mice stimulated AMPK phosphorylation of skeletal muscle and improved glucose tolerance. Taken together, these results suggest that Xn and Xc regulate glucose homeostasis through LKB1-dependent AMPK activation and that the compounds are potential candidate drugs for the treatment of type 2 diabetes mellitus.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Xantenos/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Línea Celular , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa , Activación Enzimática , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Ratas
16.
Arterioscler Thromb Vasc Biol ; 34(8): 1697-703, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24947526

RESUMEN

OBJECTIVE: Aberrant regulation of the proliferation, survival, and migration of endothelial cells (ECs) is closely related to the abnormal angiogenesis that occurs in hypoxia-induced pathological situations, such as cancer and vascular retinopathy. Hypoxic conditions and the subsequent upregulation of hypoxia-inducible factor-1α and target genes are important for the angiogenic functions of ECs. Phospholipase D2 (PLD2) is a crucial signaling mediator that stimulates the production of the second messenger phosphatidic acid. PLD2 is involved in various cellular functions; however, its specific roles in ECs under hypoxia and in vivo angiogenesis remain unclear. In the present study, we investigated the potential roles of PLD2 in ECs under hypoxia and in hypoxia-induced pathological angiogenesis in vivo. APPROACH AND RESULTS: Pld2 knockout ECs exhibited decreased hypoxia-induced cellular responses in survival, migration, and thus vessel sprouting. Analysis of hypoxia-induced gene expression revealed that PLD2 deficiency disrupted the upregulation of hypoxia-inducible factor-1α target genes, including VEGF, PFKFB3, HMOX-1, and NTRK2. Consistent with this, PLD2 contributed to hypoxia-induced hypoxia-inducible factor-1α expression at the translational level. The roles of PLD2 in hypoxia-induced in vivo pathological angiogenesis were assessed using oxygen-induced retinopathy and tumor implantation models in endothelial-specific Pld2 knockout mice. Pld2 endothelial-specific knockout retinae showed decreased neovascular tuft formation, despite a larger avascular region. Tumor growth and tumor blood vessel formation were also reduced in Pld2 endothelial-specific knockout mice. CONCLUSIONS: Our findings demonstrate a novel role for endothelial PLD2 in the survival and migration of ECs under hypoxia via the expression of hypoxia-inducible factor-1α and in pathological retinal angiogenesis and tumor angiogenesis in vivo.


Asunto(s)
Carcinoma Pulmonar de Lewis/irrigación sanguínea , Células Endoteliales/enzimología , Hipoxia/complicaciones , Neovascularización Patológica , Fosfolipasa D/deficiencia , Neovascularización Retiniana/enzimología , Vasos Retinianos/enzimología , Animales , Animales Recién Nacidos , Hipoxia de la Célula , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D/genética , Interferencia de ARN , Neovascularización Retiniana/etiología , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Transfección
17.
Diabetologia ; 57(7): 1456-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24744121

RESUMEN

AIMS/HYPOTHESIS: Obesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance. METHODS: We used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis. RESULTS: We report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity. CONCLUSIONS/INTERPRETATION: In this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Quimiocina CXCL12/metabolismo , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Línea Celular , Quimiotaxis/fisiología , Ratones , Obesidad/metabolismo
18.
Proteomics ; 14(12): 1494-502, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24729417

RESUMEN

High-grade gliomas are one of the most common brain tumors and notorious for poor prognosis due to their malignant nature. Gliomas have an extensive area of hypoxia, which is critical for glioma progression by inducing aggressiveness and activating the angiogenesis process in the tumor microenvironment. To resolve the factors responsible for the highly malignant nature of gliomas, we comprehensively profiled the U373MG glioma cell secretome-exosome and soluble fraction under hypoxic and normoxic conditions. A total of 239 proteins were identified from the exosome and soluble fractions. Vascular endothelial growth factor, stanniocalcin 1 (STC1) and stanniocalcin 2, and insulin-like growth factor binding protein 3 and 6, enriched in the soluble fraction, and lysyl oxidase homolog 2 enriched in the exosomal fraction were identified as upregulated proteins by hypoxia based on a label-free quantitative analysis. STCs and insulin-like growth factor binding proteins, which were identified as secretory proteins under hypoxic conditions, were highly correlated with glioma grade in human patients by microarray analysis. An in vitro scratch wound assay revealed that STC1 and 2 have important functions in the induction of cell migration in a hypoxia-dependent manner, suggesting that they are hypoxia-dependent migration factors.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Glioma/metabolismo , Hipoxia/fisiopatología , Proteoma/análisis , Biomarcadores de Tumor/genética , Western Blotting , Neoplasias Encefálicas/patología , Proliferación Celular , Cromatografía Liquida/métodos , Exosomas/metabolismo , Glioma/patología , Glicoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Clasificación del Tumor , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem/métodos , Células Tumorales Cultivadas , Microambiente Tumoral
19.
Mol Cell Biol ; 33(8): 1608-20, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23401856

RESUMEN

Muscle atrophy occurs under various catabolic conditions, including insulin deficiency, insulin resistance, or increased levels of glucocorticoids. This results from reduced levels of insulin receptor substrate 1 (IRS-1), leading to decreased phosphatidylinositol 3-kinase activity and thereby activation of FoxO transcription factors. However, the precise mechanism of reduced IRS-1 under a catabolic condition is unknown. Here, we report that C1-Ten is a novel protein tyrosine phosphatase (PTPase) of IRS-1 that acts as a mediator to reduce IRS-1 under a catabolic condition, resulting in muscle atrophy. C1-Ten preferentially dephosphorylated Y612 of IRS-1, which accelerated IRS-1 degradation. These findings suggest a novel type of IRS-1 degradation mechanism which is dependent on C1-Ten and extends our understanding of the molecular mechanism of muscle atrophy under catabolic conditions. C1-Ten expression is increased by catabolic glucocorticoid and decreased by anabolic insulin. Reflecting these hormonal regulations, the muscle C1-Ten is upregulated in atrophy but downregulated in hypertrophy. This reveals a previously unidentified role of C1-Ten as a relevant PTPase contributing to skeletal muscle atrophy.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Línea Celular , Dexametasona/farmacología , Regulación hacia Abajo , Glucocorticoides/farmacología , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Obesos , Fibras Musculares Esqueléticas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Estabilidad Proteica , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Tensinas
20.
J Biol Chem ; 288(8): 5732-42, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23303186

RESUMEN

AMP-activated protein kinase has been described as a key signaling protein that can regulate energy homeostasis. Here, we aimed to characterize novel AMP-activated kinase (AMPK)-activating compounds that have a much lower effective concentration than metformin. As a result, emodin, a natural anthraquinone derivative, was shown to stimulate AMPK activity in skeletal muscle and liver cells. Emodin enhanced GLUT4 translocation and [(14)C]glucose uptake into the myotube in an AMPK-dependent manner. Also, emodin inhibited glucose production by suppressing the expression of key gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, in hepatocytes. Furthermore, we found that emodin can activate AMPK by inhibiting mitochondrial respiratory complex I activity, leading to increased reactive oxygen species and Ca(2+)/calmodulin-dependent protein kinase kinase activity. Finally, we confirmed that a single dose administration of emodin significantly decreased the fasting plasma glucose levels and improved glucose tolerance in C57Bl/6J mice. Increased insulin sensitivity was also confirmed after daily injection of emodin for 8 days using an insulin tolerance test and insulin-stimulated PI3K phosphorylation in wild type and high fat diet-induced diabetic mouse models. Our study suggests that emodin regulates glucose homeostasis in vivo by AMPK activation and that this may represent a novel therapeutic principle in the treatment of type 2 diabetic models.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Emodina/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Animales , Glucemia/metabolismo , Calcio/metabolismo , Línea Celular , Activación Enzimática , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Modelos Genéticos , Músculo Esquelético/citología , Mioblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA