Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 9(94): eadp3260, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259781

RESUMEN

The loss of a hand disrupts the sophisticated neural pathways between the brain and the hand, severely affecting the level of independence of the patient and the ability to carry out daily work and social activities. Recent years have witnessed a rapid evolution of surgical techniques and technologies aimed at restoring dexterous motor functions akin to those of the human hand through bionic solutions, mainly relying on probing of electrical signals from the residual nerves and muscles. Here, we report the clinical implementation of an interface aimed at achieving this goal by exploiting muscle deformation, sensed through passive magnetic implants: the myokinetic interface. One participant with a transradial amputation received an implantation of six permanent magnets in three muscles of the residual limb. A truly self-contained myokinetic prosthetic arm embedding all hardware components and the battery within the prosthetic socket was developed. By retrieving muscle deformation caused by voluntary contraction through magnet localization, we were able to control in real time a dexterous robotic hand following both a direct control strategy and a pattern recognition approach. In just 6 weeks, the participant successfully completed a series of functional tests, achieving scores similar to those achieved when using myoelectric controllers, a standard-of-care solution, with comparable physical and mental workloads. This experience raised conceptual and technical limits of the interface, which nevertheless pave the way for further investigations in a partially unexplored field. This study also demonstrates a viable possibility for intuitively interfacing humans with robotic technologies.


Asunto(s)
Amputados , Miembros Artificiales , Fuerza de la Mano , Imanes , Diseño de Prótesis , Robótica , Humanos , Amputados/rehabilitación , Fuerza de la Mano/fisiología , Robótica/instrumentación , Masculino , Músculo Esquelético/fisiología , Extremidad Superior , Mano/fisiología , Adulto , Electromiografía , Muñones de Amputación/fisiopatología , Contracción Muscular/fisiología , Implantación de Prótesis
2.
IEEE Trans Biomed Eng ; 71(3): 1068-1075, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37856259

RESUMEN

OBJECTIVE: The search for a physiologically appropriate interface for the control of dexterous hand prostheses is an ongoing challenge in bioengineering. In this context, we proposed an interface, named myokinetic control interface, based on the localization of magnets implanted in the residual limb muscles, to monitor their contractions and send appropriate commands to the artificial hand. As part of such concept, this interface requires a transcutaneous magnet localizer that can be integrated in a self-contained limb prosthesis, a feature yet to be realized within the current state of the art. METHODS: In an attempt to cover this gap, here we present a modular embedded system consisting of a computation unit able to acquire synchronized samples captured by up to eight acquisition units, so to localize multiple magnets. RESULTS: The system exhibits short computation times (<60ms) and power consumption (0.6-1.2W) which are suitable for use in a clinically viable prosthetic arm. The system proved able to localize magnets while moving at speeds in the range of physiological movements (<0.24m/s), with high accuracy (<1mm) and precision (<0.5mm). CONCLUSION: We demonstrated a system suitable for the implementation of a self-contained myokinetic prosthetic hand. SIGNIFICANCE: These results pave the way towards the clinical implementation of the myokinetic interface, with amputees controlling an artificial arm by means of implanted magnets.


Asunto(s)
Amputados , Miembros Artificiales , Brazo , Imanes , Mano/fisiología , Músculo Esquelético , Electromiografía/métodos , Diseño de Prótesis
3.
IEEE Trans Biomed Eng ; 70(10): 2972-2979, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37141061

RESUMEN

OBJECTIVE: We recently proposed a new concept of human-machine interface to control hand prostheses which we dubbed the myokinetic control interface. Such interface detects muscle displacement during contraction by localizing permanent magnets implanted in the residual muscles. So far, we evaluated the feasibility of implanting one magnet per muscle and monitoring its displacement relative to its initial position. However, multiple magnets could actually be implanted in each muscle, as using their relative distance as a measure of muscle contraction could improve the system robustness against environmental disturbances. METHODS: Here, we simulated the implant of pairs of magnets in each muscle and we compared the localization accuracy of such system with the one magnet per muscle approach, considering first a planar and then an anatomically appropriate configuration. Such comparison was also performed when simulating different grades of mechanical disturbances applied to the system (i.e., shift of the sensor grid). RESULTS: We found that implanting one magnet per muscle always led to lower localization errors under ideal conditions (i.e., no external disturbances). Differently, when mechanical disturbances were applied, magnet pairs outperformed the single magnet approach, confirming that differential measurements are able to reject common mode disturbances. CONCLUSION: We identified important factors affecting the choice of the number of magnets to implant in a muscle. SIGNIFICANCE: Our results provide important guidelines for the design of disturbance rejection strategies and for the development of the myokinetic control interface, as well as for a whole range of biomedical applications involving magnetic tracking.


Asunto(s)
Magnetismo , Imanes , Humanos , Músculos , Contracción Muscular
4.
IEEE Trans Biomed Circuits Syst ; 16(2): 266-274, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316192

RESUMEN

A new concept of human-machine interface to control hand prostheses based on displacements of multiple magnets implanted in the limb residual muscles, the myokinetic control interface, has been recently proposed. In previous works, magnets localization has been achieved following an optimization procedure to find an approximate solution to an analytical model. To simplify and speed up the localization problem, here we employ machine learning models, namely linear and radial basis functions artificial neural networks, which can translate measured magnetic information to desired commands for active prosthetic devices. They were developed offline and then implemented on field-programmable gate arrays using customized floating-point operators. We optimized computational precision, execution time, hardware, and energy consumption, as they are essential features in the context of wearable devices. When used to track a single magnet in a mockup of the human forearm, the proposed data-driven strategy achieved a tracking accuracy of 720 µm 95% of the time and latency of 12.07 µs. The proposed system architecture is expected to be more power-efficient compared to previous solutions. The outcomes of this work encourage further research on improving the devised methods to deal with multiple magnets simultaneously.


Asunto(s)
Magnetismo , Redes Neurales de la Computación , Mano , Humanos , Fenómenos Magnéticos , Imanes
5.
Comput Methods Programs Biomed ; 211: 106407, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34537492

RESUMEN

BACKGROUND AND OBJECTIVES: Magnetic tracking involves the use of magnetic sensors to localize one or more magnetic objectives, in those applications in which a free line-of-sight between them and the operator is hampered. We applied this concept to prosthetic hands, which could be controlled by tracking permanent magnets implanted in the forearm muscles of amputees (the myokinetic control interface). Concerning the system design, the definition of a sensor distribution which maximizes the information, while minimizing the computational cost of localization, is still an open problem. We present a simple yet effective strategy to define an optimal sensor set for tracking multiple magnets, which we called the Peaks method. METHODS: We simulated a proximal amputation using a 3D CAD model of a human forearm, and the implantation of 11 magnets in the residual muscles. The Peaks method was applied to select a subset of sensors from an initial grid of 480 elements. The approach involves setting an appropriate threshold to select those sensors associated with the peaks in the magnetic flux density and its gradient distributions. Selected sensors were used to track the magnets during muscle contraction. For validating our strategy, an alternative method based on state-of-the-art solutions was implemented. We finally proposed a calibration phase to customize the sensor distribution on the specific patient's anatomy. RESULTS: 80 sensors were selected with the Peaks method, and 101 with the alternative one. A localization accuracy below 0.22 mm and 1.86° for position and orientation, respectively, was always achieved. Unlike alternative methods from the literature, neither iterative or analytical solution, nor a-priori knowledge on the magnet positions or trajectories were required, and yet the outcomes achieved with the two strategies proved statistically comparable. The calibration phase proved useful to adapt the sensors to the patient's stump and to increase the signal-to-noise ratio against intrinsic noise. CONCLUSIONS: We demonstrated an efficient and general solution for solving the design optimization problem (i.e. identifying an optimal sensor set) and reducing the computational cost of localization. The optimal sensor distribution mirrors the field shape traced by the magnets on the sensing surface, being an intuitive and fast way of achieving the same results of more complex and application-specific methods. Several applications in the (bio)medical field involving magnetic tracking will benefit from the outcomes of this work.


Asunto(s)
Amputados , Mano , Humanos , Fenómenos Magnéticos , Magnetismo , Imanes
6.
Sci Rep ; 11(1): 4850, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649463

RESUMEN

Magnetic localizers have been widely investigated in the biomedical field, especially for intra-body applications, because they don't require a free line-of-sight between the implanted magnets and the magnetic field sensors. However, while researchers have focused on narrow and specific aspects of the localization problem, no one has comprehensively searched for general design rules for accurately localizing multiple magnetic objectives. In this study, we sought to systematically analyse the effects of remanent magnetization, number of sensors, and geometrical configuration (i.e. distance among magnets-Linter-MM-and between magnets and sensors-LMM-sensor) on the accuracy of the localizer in order to unveil the basic principles of the localization problem. Specifically, through simulations validated with a physical system, we observed that the accuracy of the localization was mainly affected by a specific angle ([Formula: see text] = tan-1(Linter-MM / LMM-sensor)), descriptive of the system geometry. In particular, while tracking nine magnets, errors below ~ 1 mm (10% of the length of the simulated trajectory) and around 9° were obtained if θ ≥ ~ 31°. The latter proved a general rule across all tested conditions, also when the number of magnets was doubled. Our results are interesting for a whole range of biomedical engineering applications exploiting multiple-magnets tracking, such as human-machine interfaces, capsule endoscopy, ventriculostomy interventions, and endovascular catheter navigation.

7.
IEEE Trans Neural Syst Rehabil Eng ; 28(11): 2451-2458, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32956064

RESUMEN

We recently introduced the concept of a new human-machine interface (the myokinetic control interface) to control hand prostheses. The interface tracks muscle contractions via permanent magnets implanted in the muscles and magnetic field sensors hosted in the prosthetic socket. Previously we showed the feasibility of localizing several magnets in non-realistic workspaces. Here, aided by a 3D CAD model of the forearm, we computed the localization accuracy simulated for three different below-elbow amputation levels, following general guidelines identified in early work. To this aim we first identified the number of magnets that could fit and be tracked in a proximal (T1), middle (T2) and distal (T3) representative amputation, starting from 18, 20 and 23 eligible muscles, respectively. Then we ran a localization algorithm to estimate the poses of the magnets based on the sensor readings. A sensor selection strategy (from an initial grid of 840 sensors) was also implemented to optimize the computational cost of the localization process. Results showed that the localizer was able to accurately track up to 11 (T1), 13 (T2) and 19 (T3) magnetic markers (MMs) with an array of 154, 205 and 260 sensors, respectively. Localization errors lower than 7% the trajectory travelled by the magnets during muscle contraction were always achieved. This work not only answers the question: "how many magnets could be implanted in a forearm and successfully tracked with a the myokinetic control approach?", but also provides interesting insights for a wide range of bioengineering applications exploiting magnetic tracking.


Asunto(s)
Amputados , Antebrazo , Mano , Humanos , Imanes , Prótesis e Implantes
8.
Comput Methods Programs Biomed ; 192: 105420, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32171151

RESUMEN

Background and objectivesAutomated segmentation and tracking of surgical instruments and catheters under X-ray fluoroscopy hold the potential for enhanced image guidance in catheter-based endovascular procedures. This article presents a novel method for real-time segmentation of catheters and guidewires in 2d X-ray images. We employ Convolutional Neural Networks (CNNs) and propose a transfer learning approach, using synthetic fluoroscopic images, to develop a lightweight version of the U-Net architecture. Our strategy, requiring a small amount of manually annotated data, streamlines the training process and results in a U-Net model, which achieves comparable performance to the state-of-the-art segmentation, with a decreased number of trainable parameters. MethodsThe proposed transfer learning approach exploits high-fidelity synthetic images generated from real fluroscopic backgrounds. We implement a two-stage process, initial end-to-end training and fine-tuning, to develop two versions of our model, using synthetic and phantom fluoroscopic images independently. A small number of manually annotated in-vivo images is employed to fine-tune the deepest 7 layers of the U-Net architecture, producing a network specialized for pixel-wise catheter/guidewire segmentation. The network takes as input a single grayscale image and outputs the segmentation result as a binary mask against the background. ResultsEvaluation is carried out with images from in-vivo fluoroscopic video sequences from six endovascular procedures, with different surgical setups. We validate the effectiveness of developing the U-Net models using synthetic data, in tests where fine-tuning and testing in-vivo takes place both by dividing data from all procedures into independent fine-tuning/testing subsets as well as by using different in-vivo sequences. Accurate catheter/guidewire segmentation (average Dice coefficient of  ~ 0.55,  ~ 0.26 and  ~ 0.17) is obtained with both U-Net models. Compared to the state-of-the-art CNN models, the proposed U-Net achieves comparable performance ( ± 5% average Dice coefficients) in terms of segmentation accuracy, while yielding a 84% reduction of the testing time. This adds flexibility for real-time operation and makes our network adaptable to increased input resolution. ConclusionsThis work presents a new approach in the development of CNN models for pixel-wise segmentation of surgical catheters in X-ray fluoroscopy, exploiting synthetic images and transfer learning. Our methodology reduces the need for manually annotating large volumes of data for training. This represents an important advantage, given that manual pixel-wise annotations is a key bottleneck in developing CNN segmentation models. Combined with a simplified U-Net model, our work yields significant advantages compared to current state-of-the-art solutions.


Asunto(s)
Catéteres , Aprendizaje Profundo , Fluoroscopía , Redes Neurales de la Computación , Cirugía Asistida por Computador , Rayos X , Humanos , Procesamiento de Imagen Asistido por Computador
9.
Sensors (Basel) ; 19(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319463

RESUMEN

The quest for an intuitive and physiologically appropriate human machine interface for the control of dexterous prostheses is far from being completed. In the last decade, much effort has been dedicated to explore innovative control strategies based on the electrical signals generated by the muscles during contraction. In contrast, a novel approach, dubbed myokinetic interface, derives the control signals from the localization of multiple magnetic markers (MMs) directly implanted into the residual muscles of the amputee. Building on this idea, here we present an embedded system based on 32 magnetic field sensors and a real time computation platform. We demonstrate that the platform can simultaneously localize in real-time up to five MMs in an anatomically relevant workspace. The system proved highly linear (R2 = 0.99) and precise (1% repeatability), yet exhibiting short computation times (4 ms) and limited cross talk errors (10% the mean stroke of the magnets). Compared to a previous PC implementation, the system exhibited similar precision and accuracy, while being ~75% faster. These results proved for the first time the viability of using an embedded system for magnet localization. They also suggest that, by using an adequate number of sensors, it is possible to increase the number of simultaneously tracked MMs while introducing delays that are not perceivable by the human operator. This could allow to control more degrees of freedom than those controllable with current technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA