Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 40(21): 5113-6, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512532

RESUMEN

We experimentally demonstrate ∼2 dB quality (Q)-factor enhancement in terms of fiber nonlinearity compensation of 40 Gb/s 16 quadrature amplitude modulation coherent optical orthogonal frequency-division multiplexing at 2000 km, using a nonlinear equalizer (NLE) based on artificial neural networks (ANN). Nonlinearity alleviation depends on escalation of the ANN training overhead and the signal bit rate, reporting ∼4 dBQ-factor enhancement at 70 Gb/s, whereas a reduction of the number of ANN neurons annihilates the NLE performance. An enhanced performance by up to ∼2 dB in Q-factor compared to the inverse Volterra-series transfer function NLE leads to a breakthrough in the efficiency of ANN.

2.
Opt Lett ; 39(23): 6711-4, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25490659

RESUMEN

This paper presents a long-reach orthogonal frequency division multiplexing wavelength division multiplexing passive optical network (OFDM WDM-PON), a system capable of delivering 100 Gb/s of data downstream and 2 Gb/s of data upstream on a single wavelength. The optical sources for downstream data and upstream data are a continuous-wave laser at a central office and a reflective semiconductor optical amplifier (RSOA) at each optical network unit.

3.
ScientificWorldJournal ; 2014: 539720, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782662

RESUMEN

Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA) for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP) owners' satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners' satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.


Asunto(s)
Modelos Teóricos , Asignación de Recursos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA