Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30308, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707425

RESUMEN

Pulmonary disease identification and characterization are among the most intriguing research topics of recent years since they require an accurate and prompt diagnosis. Although pulmonary radiography has helped in lung disease diagnosis, the interpretation of the radiographic image has always been a major concern for doctors and radiologists to reduce diagnosis errors. Due to their success in image classification and segmentation tasks, cutting-edge artificial intelligence techniques like machine learning (ML) and deep learning (DL) are widely encouraged to be applied in the field of diagnosing lung disorders and identifying them using medical images, particularly radiographic ones. For this end, the researchers are concurring to build systems based on these techniques in particular deep learning ones. In this paper, we proposed three deep-learning models that were trained to identify the presence of certain lung diseases using thoracic radiography. The first model, named "CovCXR-Net", identifies the COVID-19 disease (two cases: COVID-19 or normal). The second model, named "MDCXR3-Net", identifies the COVID-19 and pneumonia diseases (three cases: COVID-19, pneumonia, or normal), and the last model, named "MDCXR4-Net", is destined to identify the COVID-19, pneumonia and the pulmonary opacity diseases (4 cases: COVID-19, pneumonia, pulmonary opacity or normal). These models have proven their superiority in comparison with the state-of-the-art models and reached an accuracy of 99,09 %, 97.74 %, and 90,37 % respectively with three benchmarks.

2.
PeerJ Comput Sci ; 8: e1050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092005

RESUMEN

Context: The computerization of both fetal heart rate (FHR) and intelligent classification modeling of the cardiotocograph (CTG) is one of the approaches that are utilized in assisting obstetricians in conducting initial interpretation based on (CTG) analysis. CTG tracing interpretation is crucial for the monitoring of the fetal status during weeks into the pregnancy and childbirth. Most contemporary studies rely on computer-assisted fetal heart rate (FHR) feature extraction and CTG categorization to determine the best precise diagnosis for tracking fetal health during pregnancy. Furthermore, through the utilization of a computer-assisted fetal monitoring system, the FHR patterns can be precisely detected and categorized. Objective: The goal of this project is to create a reliable feature extraction algorithm for the FHR as well as a systematic and viable classifier for the CTG through the utilization of the MATLAB platform, all the while adhering to the recognized Royal College of Obstetricians and Gynecologists (RCOG) recommendations. Method: The compiled CTG data from spiky artifacts were cleaned by a specifically created application and compensated for missing data using the guidelines provided by RCOG and the MATLAB toolbox after the implemented data has been processed and the FHR fundamental features have been extracted, for example, the baseline, acceleration, deceleration, and baseline variability. This is followed by the classification phase based on the MATLAB environment. Next, using the guideline provided by the RCOG, the signals patterns of CTG were classified into three categories specifically as normal, abnormal (suspicious), or pathological. Furthermore, to ensure the effectiveness of the created computerized procedure and confirm the robustness of the method, the visual interpretation performed by five obstetricians is compared with the results utilizing the computerized version for the 150 CTG signals. Results: The attained CTG signal categorization results revealed that there is variability, particularly a trivial dissimilarity of approximately (+/-4 and 6) beats per minute (b.p.m.). It was demonstrated that obstetricians' observations coincide with algorithms based on deceleration type and number, except for acceleration values that differ by up to (+/-4). Discussion: The results obtained based on CTG interpretation showed that the utilization of the computerized approach employed in infirmaries and home care services for pregnant women is indeed suitable. Conclusions: The classification based on CTG that was used for the interpretation of the FHR attribute as discussed in this study is based on the RCOG guidelines. The system is evaluated and validated by experts based on their expert opinions and was compared with the CTG feature extraction and classification algorithms developed using MATLAB.

3.
PeerJ Comput Sci ; 8: e993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721418

RESUMEN

Background: The detection of coronary artery disease (CAD) from the X-ray coronary angiography is a crucial process which is hindered by various issues such as presence of noise, insufficient contrast of the input images along with the uncertainties caused by the motion due to respiration and variation of angles of vessels. Methods: In this article, an Automated Segmentation and Diagnosis of Coronary Artery Disease (ASCARIS) model is proposed in order to overcome the prevailing challenges in detection of CAD from the X-ray images. Initially, the preprocessing of the input images was carried out by using the modified wiener filter for the removal of both internal and external noise pixels from the images. Then, the enhancement of contrast was carried out by utilizing the optimized maximum principal curvature to preserve the edge information thereby contributing to increasing the segmentation accuracy. Further, the binarization of enhanced images was executed by the means of OTSU thresholding. The segmentation of coronary arteries was performed by implementing the Attention-based Nested U-Net, in which the attention estimator was incorporated to overcome the difficulties caused by intersections and overlapped arteries. The increased segmentation accuracy was achieved by performing angle estimation. Finally, the VGG-16 based architecture was implemented to extract threefold features from the segmented image to perform classification of X-ray images into normal and abnormal classes. Results: The experimentation of the proposed ASCARIS model was carried out in the MATLAB R2020a simulation tool and the evaluation of the proposed model was compared with several existing approaches in terms of accuracy, sensitivity, specificity, revised contrast to noise ratio, mean square error, dice coefficient, Jaccard similarity, Hausdorff distance, Peak signal-to-noise ratio (PSNR), segmentation accuracy and ROC curve. Discussion: The results obtained conclude that the proposed model outperforms the existing approaches in all the evaluation metrics thereby achieving optimized classification of CAD. The proposed method removes the large number of background artifacts and obtains a better vascular structure.

4.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458962

RESUMEN

Emotions are an essential part of daily human communication. The emotional states and dynamics of the brain can be linked by electroencephalography (EEG) signals that can be used by the Brain-Computer Interface (BCI), to provide better human-machine interactions. Several studies have been conducted in the field of emotion recognition. However, one of the most important issues facing the emotion recognition process, using EEG signals, is the accuracy of recognition. This paper proposes a deep learning-based approach for emotion recognition through EEG signals, which includes data selection, feature extraction, feature selection and classification phases. This research serves the medical field, as the emotion recognition model helps diagnose psychological and behavioral disorders. The research contributes to improving the performance of the emotion recognition model to obtain more accurate results, which, in turn, aids in making the correct medical decisions. A standard pre-processed Database of Emotion Analysis using Physiological signaling (DEAP) was used in this work. The statistical features, wavelet features, and Hurst exponent were extracted from the dataset. The feature selection task was implemented through the Binary Gray Wolf Optimizer. At the classification stage, the stacked bi-directional Long Short-Term Memory (Bi-LSTM) Model was used to recognize human emotions. In this paper, emotions are classified into three main classes: arousal, valence and liking. The proposed approach achieved high accuracy compared to the methods used in past studies, with an average accuracy of 99.45%, 96.87% and 99.68% of valence, arousal, and liking, respectively, which is considered a high performance for the emotion recognition model.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Electroencefalografía , Emociones , Memoria a Corto Plazo
5.
Telemat Inform ; 61: 101597, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34887615

RESUMEN

The novel outbreak of coronavirus disease (COVID-19) was an unexpected event for tourism in the world as well as tourism in the Netherlands. In this situation, the travelers' decision-making for tourism destinations was heavily affected by this global event. Social media usage has played an essential role in travelers' decision-making and increased the awareness of travel-related risks from the COVID-19 outbreak. Online consumer media for the outbreak of COVID-19 has been a crucial source of information for travelers. In the current situation, tourists are using electronic word of mouth (eWOM) more and more for travel planning. Opinions provided by peer travelers for the outbreak of COVID-19 tend to reduce the possibility of poor decisions. Nevertheless, the increasing number of reviews per experience makes reading all feedback hard to make an informed decision. Accordingly, recommendation agents developed by machine learning techniques can be effective in the analysis of such social big data for the identification of useful patterns from the data, knowledge discovery, and real-time service recommendations. The current research aims to adopt a framework for the recommendation agents through topic modeling to uncover the most important dimensions of COVID-19 reviews in the Netherland forums in TripAdvisor. This study demonstrates how social networking websites and online reviews can be effective in unexpected events for travelers' decision making. We conclude with the implications of our study for future research and practice.

6.
PeerJ Comput Sci ; 7: e414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834100

RESUMEN

BACKGROUND: The Internet of Medical Things (IoMTs) is gradually replacing the traditional healthcare system. However, little attention has been paid to their security requirements in the development of the IoMT devices and systems. One of the main reasons can be the difficulty of tuning conventional security solutions to the IoMT system. Machine Learning (ML) has been successfully employed in the attack detection and mitigation process. Advanced ML technique can also be a promising approach to address the existing and anticipated IoMT security and privacy issues. However, because of the existing challenges of IoMT system, it is imperative to know how these techniques can be effectively utilized to meet the security and privacy requirements without affecting the IoMT systems quality, services, and device's lifespan. METHODOLOGY: This article is devoted to perform a Systematic Literature Review (SLR) on the security and privacy issues of IoMT and their solutions by ML techniques. The recent research papers disseminated between 2010 and 2020 are selected from multiple databases and a standardized SLR method is conducted. A total of 153 papers were reviewed and a critical analysis was conducted on the selected papers. Furthermore, this review study attempts to highlight the limitation of the current methods and aims to find possible solutions to them. Thus, a detailed analysis was carried out on the selected papers through focusing on their methods, advantages, limitations, the utilized tools, and data. RESULTS: It was observed that ML techniques have been significantly deployed for device and network layer security. Most of the current studies improved traditional metrics while ignored performance complexity metrics in their evaluations. Their studies environments and utilized data barely represent IoMT system. Therefore, conventional ML techniques may fail if metrics such as resource complexity and power usage are not considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA