Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; 21(9): e2100168, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34173326

RESUMEN

Developing biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion-based 3D bioprinting. Self-supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue-like scaffolds for tissue regeneration.


Asunto(s)
Bioimpresión , Materiales Biocompatibles/química , Gelatina/química , Hidrogeles/química , Pectinas , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
2.
Biomaterials ; 233: 119721, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31954958

RESUMEN

The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients' OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh.


Asunto(s)
Procedimientos de Cirugía Plástica , Estereolitografía , Animales , Durapatita , Humanos , Órbita , Prótesis e Implantes , Mallas Quirúrgicas , Titanio
3.
Int J Nanomedicine ; 13: 5701-5718, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30288042

RESUMEN

BACKGROUND: Poly(trimethylene carbonate) (PTMC) has wide biomedical applications in the field of tissue engineering, due to its biocompatibility and biodegradability features. Its common manufacturing involves photofabrication, such as stereolithography (SLA), which allows the fabrication of complex and controlled structures. Despite the great potential of SLA-fabricated scaffolds, very few examples of PTMC-based drug delivery systems fabricated using photo-fabrication can be found ascribed to light-triggered therapeutics instability, degradation, side reaction, binding to the macromers, etc. These concerns severely restrict the development of SLA-fabricated PTMC structures for drug delivery purposes. METHODS: In this context, we propose here, as a proof of concept, to load a drug model (dexamethasone) into electrospun fibers of poly(lactic acid), and then to integrate these bioactive fibers into the photo-crosslinkable resin of PTMC to produce hybrid films. The hybrid films' properties and drug release profile were characterized; its biological activity was investigated via bone marrow mesenchymal stem cells culture and differentiation assays. RESULTS: The polymer/polymer hybrids exhibit improved properties compared with PTMC-only films, in terms of mechanical performance and drug protection from UV denaturation. We further validated that the dexamethasone preserved its biological activity even after photoreaction within the PTMC/poly(lactic acid) hybrid structures by investigating bone marrow mesenchymal stem cells proliferation and osteogenic differentiation. CONCLUSION: This study demonstrates the potential of polymer-polymer scaffolds to simultaneously reinforce the mechanical properties of soft matrices and to load sensitive drugs in scaffolds that can be fabricated via additive manufacturing.


Asunto(s)
Dioxanos/química , Sistemas de Liberación de Medicamentos , Nanocompuestos/química , Osteogénesis , Poliésteres/química , Polímeros/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Liberación de Fármacos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Nanofibras/ultraestructura , Ingeniería de Tejidos , Andamios del Tejido/química
4.
Clin Hemorheol Microcirc ; 60(1): 3-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25818155

RESUMEN

Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).


Asunto(s)
Materiales Biocompatibles/química , Dioxanos/química , Durapatita/química , Nanocompuestos/química , Órbita/cirugía , Fracturas Orbitales/cirugía , Polímeros/química , Materiales Biocompatibles/farmacología , Dioxanos/farmacología , Durapatita/farmacología , Ensayo de Materiales , Oseointegración , Polímeros/farmacología , Prótesis e Implantes , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA