RESUMEN
The aim of this study was to investigate the ability of tannic acid (TA) in preventing memory deficits and neurochemical alterations observed in a model for Sporadic Dementia of Alzheimer's Type. Rats were treated with TA (30 mg/kg) daily for 21 days, and subsequently received intracerebroventricular injection of streptozotocin (STZ). We observed that STZ induced learning and memory impairments; however, treatment with TA was able to prevent these effects. In cerebral cortex and hippocampus, STZ induced an increase in acetylcholinesterase activity, reduced Na+, K+-ATPase activity and induced oxidative stress increasing thiobarbituric acid-reactive substances, nitrites and reactive oxygen species levels and reducing the activity of antioxidant enzymes. Treatment with TA was able in prevent the major of these neurochemical alterations. In conclusion, TA prevented memory deficits, alterations in brain enzyme activities, and oxidative damage induced by STZ. Thus, TA can be an interesting strategy in the prevention of Sporadic Alzheimer's Disease.
Asunto(s)
Enfermedad de Alzheimer , Acetilcolinesterasa/metabolismo , Adenosina Trifosfatasas , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Animales , Modelos Animales de Enfermedad , Aprendizaje por Laberinto , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Wistar , Estreptozocina/toxicidad , TaninosRESUMEN
Tannic acid (TA) is a hydrolysable glycosidic polyphenol polymer of gallic acid, which possesses neuroprotective properties. The aim of this study was to evaluate the effect of TA treatment on cognitive performance and neurochemical changes in an experimental model of sporadic dementia of Alzheimer's type (SDAT) induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) and to explore the potential cellular and molecular mechanisms underlying these effects. Adult male rats were divided into four groups: control, TA, STZ, and TA + STZ. Animals from TA and TA + STZ groups were treated with TA (30 mg/kg) daily, by gavage, for 21 days; others groups received water (1 mL/kg). Subsequently, an ICV injection of STZ (3 mg/kg) was administered into the lateral ventricles of animals from STZ and TA + STZ groups, while other groups received citrate buffer. Cognitive deficits (short-term memory), neuronal survival, neuroinflammation as well as expression of SNAP-25, Akt, and pAkt were evaluated in the cerebral cortex. TA treatment protected against the impairment of memory in STZ-induced SDAT. STZ promoted an increase in neuronal death and the levels of proinflammatory cytokines (IL-6 and TNF-α) and a decrease in Akt and pAkt expression; TA was able to restore these changes. Neither STZ nor TA altered SNAP-25 expression or the levels of IL-12 and IL-4 in the cerebral cortex. Our study highlights that treatment with TA prevents memory deficits and reestablishes Akt and pAkt expression, protecting against neuronal death and neuroinflammation in STZ-induced SDAT in rats.