Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 55: 110737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175794

RESUMEN

The database contains detailed statistics of compressible turbulent plane channel (TPC) flow, obtained from direct numerical simulation (DNS), with a very-high-order massively parallel solver of the compressible Navier-Stokes equations. It contains datasets for 25 different flow conditions determined by the corresponding HCB friction Reynolds number and centerline Mach number, covering the ranges 100 ⪅ R e τ ★ ⪅ 1000 and 0.3 ⪅ M ¯ CL x ⪅ 2.5 . All calculations are for strictly isothermal wall conditions at temperature T w = 298 K in a medium-size (MB) computational box ( 8 π δ × 2 δ × 4 π δ where 2 δ is the channel-height). Statistics (moments and pdfs) were collected after the elimination of the transient, and post-processed to create the dataset, which contains only plain text (.txt) space-separated multicolumn files for ease of use. The dataset for each flow-condition is tagged by the values of ( R e τ ★ , M ¯ CL x ) and is organized in 4 directories: (0) global data files, (1) profiles and budgets (meanflow profiles, velocity-moments up to 6-order, budgets of Reynolds-stresses transport, turbulent fluxes appearing in transport equations for velocity-moments and thermodynamic quantities, correlation coefficients between thermodynamic variables, and skewness and flatness profiles) as a function of the wall-distance, (2) single-variable probability density functions (pdfs) for numerous flow quantities at selected wall-normal distances, and (3) two-variable joint pdfs for numerous couples of flow-quantities at the same selected wall-normal distances.

2.
Entropy (Basel) ; 26(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38920538

RESUMEN

The thermodynamic turbulence structure of compressible aerodynamic flows is often characterised by the correlation coefficient of entropy with pressure or temperature. We study entropy fluctuations s' and their correlations with the fluctuations of the other thermodynamic variables in compressible turbulent plane channel flow using dns data. We investigate the influence of the hcb (Huang-Coleman-Bradshaw) friction Reynolds number (100⪅Reτ★⪅1000) and of the centreline Mach number (0.3⪅M¯CLx⪅2.5) on the magnitude and location of the peak of the root-mean-square srms'. The complete series expansions of s' with respect to the fluctuations of the basic thermodynamic variables (pressure p, density ρ and temperature T) are calculated for the general case of variable heat-capacity cp(T) thermodynamics. The correlation coefficients of s' with the fluctuations of the basic thermodynamic quantities (cs'p', cs'ρ', cs'T'), for varying (Reτ★,M¯CLx), are studied. Insight on these correlations is provided by considering the probability density function (pdf) of s' and its joint pdfs with the other thermodynamic variables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA