Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 286: 112272, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677337

RESUMEN

The recycling of biogas residues resulting from the anaerobic digestion of organic waste on agricultural land is among the means to reduce chemical fertilizer use and combat climate change. This in sacco decomposition study investigates (1) the potential of the granulated biogas residue fraction to provide nutrients and enhance soil carbon sequestration when utilized as exogenous organic matter in grassland soils, and (2) the impact of different nitrogen fertilizers on the organic matter decomposition and nutrient release processes. The experiment was conducted in two permanent grasslands of the Greater Region over one management period using rooibos tea as a comparator material. The decomposition and chemical changes of the two materials after incubation in the soil were assessed by measuring the mass loss, total carbon and nitrogen status, and fibre composition in cellulose, hemicellulose and lignin. Overall, after the incubation period, granulated biogas residue maintained up to 68% of its total mass, organic matter and total carbon; increased its content in recalcitrant organic matter by up to 45% and released 45% of its total nitrogen. Granulated biogas residue demonstrated resilience and a higher response uniformity when exposed to different nitrogen fertilizers, as opposed to the comparator material of rooibos tea. However, the magnitude of fertilizer-type effect varied, with ammonium nitrate and the combinatorial treatment of raw biogas residue mixed with urea leading to the highest organic matter loss from the bags. Our findings suggest that granulated biogas residue is a biofertilizer with the potential to supply nutrients to soil biota over time, and promote carbon sequestration in grassland soils, and thereby advance agricultural sustainability while contributing to climate change mitigation.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Biocombustibles , Carbono , Fertilizantes/análisis , Pradera , Nitrógeno/análisis
2.
Sci Total Environ ; 666: 212-225, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30798232

RESUMEN

To provide sufficient quantities of food and feed, farming systems have to overcome limiting factors such as the nutrient depletion of arable soils. Nitrogen being the main mineral element required for plant growth, has led to the extensive use of chemical fertilizers causing nitrogen pollution of the ecosystems. This field study investigates the use of biogas residues (BRs) as biofertilizers and their contribution to the mitigation of nitrate leaching in agricultural soils, while also demonstrating the polluting nature of chemical fertilizers. Nine different fertilization treatments classified in three schemes and two nitrogen doses were tested for three consecutive years on a grassland in the Walloon Region of Belgium. Residual soil mineral nitrogen, percentage contribution of treatments in residual nitrate and agronomic performance were assessed for each fertilization treatment. The results obtained showed significant differences on treatment and scheme level regarding nitrate accumulation in the soil, with chemical fertilizers posing the highest nitrate leaching risk. BRs did not cause nitrate accumulation in the soil, and were N rate and rainfall independent, while the chemical treatments indicated a cumulative tendency under high N rate and low precipitation. Forage yield did not demonstrate statistical differences on treatment and scheme level but varied with changing precipitation, while the maximum application rate suggested a plateau. Aboveground nitrogen content was significantly higher after the application of chemical fertilizers only in the first year, while all the chemical treatments indicated a dilution effect under elevated annual rainfall. Finally, the partial substitution of chemical fertilizers by raw digestate reduced the concentration of NO3- in the soil without having a negative impact on the yield and N content of the biomass. These results strongly advocate for the environmental benefits of BRs over chemical fertilizers and underline their suitability as biofertilizers and substitutes for chemical fertilizers in similar agricultural systems.


Asunto(s)
Biocombustibles/análisis , Restauración y Remediación Ambiental/métodos , Fertilizantes/análisis , Pradera , Nitratos/análisis , Contaminantes del Suelo/análisis , Bélgica
3.
Bioresour Technol ; 166: 358-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24929279

RESUMEN

The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions.


Asunto(s)
Biocombustibles , Conservación de los Recursos Energéticos/métodos , Productos Agrícolas/química , Metano/análisis , Zea mays/química , Lignina/análisis , Poaceae/química , Sorghum/química
4.
New Phytol ; 187(2): 368-379, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20487315

RESUMEN

SUMMARY: This study describes the quantitative trait locus (QTL) analysis of cadmium (Cd), zinc (Zn), iron (Fe), potassium (K), magnesium (Mg) and calcium (Ca) accumulation in the pseudometallophyte Arabidopsis halleri under conditions of Cd excess using an interspecific A. halleri x Arabidopsis lyrata F(2) population. *Our data provide evidence for the implication of one major QTL in Cd hyperaccumulation in A. halleri, and suggests that Cd tolerance and accumulation are not independent in A. halleri. Moreover, the major loci responsible for Zn hyperaccumulation in the absence of Cd appear to be the same when Cd is present at high concentrations. *More than twofold higher Fe concentrations were measured in A. halleri shoots than in A. lyrata, suggesting a different regulation of Fe accumulation in the hyperaccumulator. *With the exception of Ca, the accumulation of Cd was significantly correlated with the accumulation of all elements measured in the F(2) progeny, suggesting pleiotropic gene action. However, QTL analysis identified pleiotropic QTLs only for Cd, Zn and Fe. Mg accumulation was negatively correlated with Cd accumulation, as well as with dry shoot biomass, suggesting that it might indicate cellular damage.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cadmio/toxicidad , Cruzamientos Genéticos , Elementos Químicos , Minerales/metabolismo , Sitios de Carácter Cuantitativo/genética , Contaminantes del Suelo/toxicidad , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Cadmio/metabolismo , Intervalos de Confianza , Epistasis Genética , Genoma de Planta/genética , Hierro/metabolismo , Escala de Lod , Potasio/metabolismo , Zinc/metabolismo
5.
Nat Genet ; 40(12): 1489-92, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18997783

RESUMEN

Plants have evolved annual and perennial life forms as alternative strategies to adapt reproduction and survival to environmental constraints. In isolated situations, such as islands, woody perennials have evolved repeatedly from annual ancestors. Although the molecular basis of the rapid evolution of insular woodiness is unknown, the molecular difference between perennials and annuals might be rather small, and a change between these life strategies might not require major genetic innovations. Developmental regulators can strongly affect evolutionary variation and genes involved in meristem transitions are good candidates for a switch in growth habit. We found that the MADS box proteins SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) not only control flowering time, but also affect determinacy of all meristems. In addition, downregulation of both proteins established phenotypes common to the lifestyle of perennial plants, suggesting their involvement in the prevention of secondary growth and longevity in annual life forms.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
6.
Plant Mol Biol ; 65(3): 233-42, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17660946

RESUMEN

The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.


Asunto(s)
Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Modelos Biológicos , Fenotipo , Fotoperiodo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA