Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 62017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30726702

RESUMEN

Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

2.
J Neurosci ; 30(32): 10655-66, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20702697

RESUMEN

Insect mushroom bodies are required for diverse behavioral functions, including odor learning and memory. Using the numerically simple olfactory pathway of the Drosophila melanogaster larva, we provide evidence that the formation of appetitive olfactory associations relies on embryonic-born intrinsic mushroom body neurons (Kenyon cells). The participation of larval-born Kenyon cells, i.e., neurons that become gradually integrated in the developing mushroom body during larval life, in this task is unlikely. These data provide important insights into how a small set of identified Kenyon cells can store and integrate olfactory information in a developing brain. To investigate possible functional subdivisions of the larval mushroom body, we anatomically disentangle its input and output neurons at the single-cell level. Based on this approach, we define 10 subdomains of the larval mushroom body that may be implicated in mediating specific interactions between the olfactory pathway, modulatory neurons, and neuronal output.


Asunto(s)
Conducta Apetitiva/fisiología , Larva/fisiología , Memoria/fisiología , Cuerpos Pedunculados/citología , Neuronas/fisiología , Vías Olfatorias/fisiología , Animales , Animales Modificados Genéticamente , Conducta Apetitiva/efectos de los fármacos , Antígenos CD8/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hidroxiurea/farmacología , Modelos Biológicos , Cuerpos Pedunculados/embriología , Neuronas/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Olfato/efectos de los fármacos , Olfato/genética , Olfato/fisiología , Estadísticas no Paramétricas , Sinapsis/metabolismo , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 106(25): 10314-9, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19502424

RESUMEN

Odor discrimination in higher brain centers is essential for behavioral responses to odors. One such center is the mushroom body (MB) of insects, which is required for odor discrimination learning. The calyx of the MB receives olfactory input from projection neurons (PNs) that are targets of olfactory sensory neurons (OSNs) in the antennal lobe (AL). In the calyx, olfactory information is transformed from broadly-tuned representations in PNs to sparse representations in MB neurons (Kenyon cells). However, the extent of stereotypy in olfactory representations in the calyx is unknown. Using the anatomically-simple larval olfactory system of Drosophila in which odor ligands for the entire set of 21 OSNs are known, we asked how odor identity is represented in the MB calyx. We first mapped the projections of all larval OSNs in the glomeruli of the AL, and then followed the connections of individual PNs from the AL to different calyx glomeruli. We thus established a comprehensive olfactory map from OSNs to a higher olfactory association center, at a single-cell level. Stimulation of single OSNs evoked strong neuronal activity in 1 to 3 calyx glomeruli, showing that broadening of the strongest PN responses is limited to a few calyx glomeruli. Stereotypic representation of single OSN input in calyx glomeruli provides a mechanism for MB neurons to detect and discriminate olfactory cues.


Asunto(s)
Encéfalo/fisiología , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Percepción Olfatoria , Animales , Dendritas/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Larva/fisiología
4.
Dev Genes Evol ; 217(3): 197-208, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17323106

RESUMEN

In this paper, we study DmOAZ, the unique Drosophila melanogaster homologue of the OAZ zinc finger protein family. We show partial conservation of the zinc finger organization between DmOAZ and the vertebrate members of this family. We determine the exon/intron structure of the dmOAZ gene and deduce its open reading frame. Reverse transcriptase-polymerase chain reaction analysis shows that dmOAZ is transcribed throughout life. In the embryo, strongest DmOAZ expression is observed in the posterior spiracles. We suggest that dmOAZ acts as a secondary target of the Abd-B gene in posterior spiracle development, downstream of cut and ems. In a newly created loss-of-function mutant, dmOAZ ( 93 ), the "filzkörper" part of the posterior spiracles, is indeed structurally abnormal. The dmOAZ ( 93 ) mutant is a larval lethal, a phenotype that may be linked to the spiracular defect. Given the dmOAZ ( 93 ) mutant as a new tool, the fruit fly may provide an alternative model for analyzing in vivo the functions of OAZ family members.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Sistema Respiratorio/embriología , Sistema Respiratorio/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/metabolismo , Larva , Datos de Secuencia Molecular , Morfogénesis , Mutación/genética , Proteínas Nucleares/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética
5.
Dev Genes Evol ; 217(3): 209-19, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17260155

RESUMEN

In this paper, we address the role of proneural genes in the formation of the dorsal organ in the Drosophila larva. This organ is an intricate compound comprising the multineuronal dome-the exclusive larval olfactory organ-and a number of mostly gustatory sensilla. We first determine the numbers of neurons and of the different types of accessory cells in the dorsal organ. From these data, we conclude that the dorsal organ derives from 14 sensory organ precursor cells. Seven of them appear to give rise to the dome, which therefore may be composed of seven fused sensilla, whereas the other precursors produce the remaining sensilla of the dorsal organ. By a loss-of-function approach, we then analyze the role of atonal, amos, and the achaete-scute complex (AS-C), which in the adult are the exclusive proneural genes required for chemosensory organ specification. We show that atonal and amos are necessary and sufficient in a complementary way for four and three of the sensory organ precursors of the dome, respectively. AS-C, on the other hand, is implicated in specifying the non-olfactory sensilla, partially in cooperation with atonal and/or amos. Similar links for these proneural genes with olfactory and gustatory function have been established in the adult fly. However, such conserved gene function is not trivial, given that adult and larval chemosensory organs are anatomically very different and that the development of adult olfactory sensilla involves cell recruitment, which is unlikely to play a role in dome formation.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Genes de Insecto , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Larva/genética , Larva/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Bulbo Olfatorio/ultraestructura , Neuronas Receptoras Olfatorias/ultraestructura
6.
Curr Biol ; 15(11): 982-92, 2005 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15936268

RESUMEN

BACKGROUND: Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? RESULTS: By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olfactory circuit. We show that each of the 21 ORNs is unique and projects to one of 21 morphologically identifiable antennal-lobe glomeruli. Each glomerulus seems to be innervated by a single projection neuron. Each projection neuron sends its axon to one or two of about 28 glomeruli in the mushroom-body calyx. We have discovered at least seven types of projection neurons that stereotypically link an identified antennal-lobe glomerulus with an identified calycal glomerulus and thus create an olfactory map in a higher brain center. CONCLUSIONS: The basic design of the larval olfactory system is similar to the adult one. However, ORNs and projection neurons lack cellular redundancy and do not exhibit any convergent or divergent connectivity; 21 ORNs confront essentially similar numbers of antennal-lobe glomeruli, projection neurons, and calycal glomeruli. Hence, we propose the Drosophila larva as an "elementary" olfactory model system.


Asunto(s)
Encéfalo/anatomía & histología , Drosophila melanogaster/fisiología , Modelos Neurológicos , Neuronas Receptoras Olfatorias/citología , Factores de Edad , Animales , Mapeo Encefálico , ADN Nucleotidiltransferasas , Drosophila melanogaster/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Larva/anatomía & histología , Larva/fisiología , Microscopía Fluorescente , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/metabolismo , Receptores Odorantes/fisiología
7.
Development ; 131(1): 83-92, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14645122

RESUMEN

The sense organs of adult Drosophila, and holometabolous insects in general, derive essentially from imaginal discs and hence are adult specific. Experimental evidence presented here, however, suggests a different developmental design for the three largely gustatory sense organs located along the pharynx. In a comprehensive cellular analysis, we show that the posteriormost of the three organs derives directly from a similar larval organ and that the two other organs arise by splitting of a second larval organ. Interestingly, these two larval organs persist despite extensive reorganization of the pharynx. Thus, most of the neurons of the three adult organs are surviving larval neurons. However, the anterior organ includes some sensilla that are generated during pupal stages. Also, we observe apoptosis in a third larval pharyngeal organ. Hence, our experimental data show for the first time the integration of complex, fully differentiated larval sense organs into the nervous system of the adult fly and demonstrate the embryonic origin of their neurons. Moreover, they identify metamorphosis of this sensory system as a complex process involving neuronal persistence, generation of additional neurons and neuronal death. Our conclusions are based on combined analysis of reporter expression from P[GAL4] driver lines, horseradish peroxidase injections into blastoderm stage embryos, cell labeling via heat-shock-induced flip-out in the embryo, bromodeoxyuridine birth dating and staining for programmed cell death. They challenge the general view that sense organs are replaced during metamorphosis.


Asunto(s)
Drosophila/crecimiento & desarrollo , Sistema Nervioso/crecimiento & desarrollo , Órganos de los Sentidos/crecimiento & desarrollo , Animales , Muerte Celular , División Celular , Femenino , Larva , Metamorfosis Biológica/fisiología , Microscopía Confocal , Sistema Nervioso/citología , Faringe/citología , Faringe/crecimiento & desarrollo , Pupa , Órganos de los Sentidos/citología
8.
Rouxs Arch Dev Biol ; 205(1-2): 62-72, 1995 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28306066

RESUMEN

The adult antennal lobe of Drosophila melanogaster emerges from a precursor, the larval antennal lobe. Pulse and pulse-chase labelling of dividing cells in larvae and pupae with bromodeoxyuridine confirmed previous data that some of the interneurons of the adult antennal lobe derive from a lateral neuroblast which starts to divide early in the first larval instar. However, the majority of these interneurons originate from neuroblasts that initiate mitosis at later stages, with a peak of about 10-12 pairs of dividing neuroblasts in the late third larval instar. No clustering of adult antennal lobe neurons according to their birthdates was observed. In contrast to neurons, terminal divisions of glia in the antennal lobe reach their maximum only 12 h after puparium formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA