Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230361

RESUMEN

In photon-deficient, noncollective Thomson scattering diagnostics, filter polychromators are typically employed in the spectral analysis of Thomson-scattered signals to achieve acceptable signal-to-noise performance. Currently, the most common polychromator filter configuration employs a set of single-passband optical filters that define individual spectral channels. Here, we introduce a new spectral analysis method for Thomson scattering based on spectral filters with multiple passbands, referred to as Thomson scattering spectral multiplexing. Implementing multi-bandpass spectral filters on polychromators increases the achievable range of electron temperature measurement for a given number of filters employed. In addition, Thomson scattering spectral multiplexing reduces systematic measurement uncertainty, with fewer required spectral channels, thereby decreasing light loss from reduced optical element interactions. A multi-bandpass filter set, optimized by a genetic algorithm, has been successfully installed and tested on the Helically Symmetric eXperiment (HSX), demonstrating the benefits of the Thomson scattering spectral multiplexing method.

2.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39258989

RESUMEN

A set of two newly designed, single-channel Czerny-Turner spectrometers has been deployed at the DIII-D tokamak for measurements of the motional Stark effect (MSE) split beam emission and the C6+ (CVI) carbon charge exchange recombination (CER) emission at high spectral (δλ = 0.13 nm) and temporal (1-5 kHz) resolution. High throughput optics (f/# = 2.8) allow for good signal-to-noise at high time resolution using fast EMCCD detectors. The MSE emission allows for spectral fitting of the magnitude and direction of the local B-field, while the carbon emission yields local ion temperature and toroidal rotation information. To reduce so-called Doppler broadening of the MSE emission, a new channel-specific variable lens-masking approach has been developed. Experimental data collected from the 2023 DIII-D experimental campaign demonstrate the signal quality and instrument fidelity for both diagnostic measurements. Moreover, initial CER data analysis shows a clear evolution of the toroidal rotation during edge localized modes. Initial progress on the advanced MSE model, including a new validated ray-trace model of the DIII-D collection optics, is shown via sensitivity analysis.

3.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136650

RESUMEN

This paper presents an overview of recent hardware extensions and data analysis developments to the Wendelstein 7-X visible core spectroscopy systems. These include upgrades to prepare the in-vessel components for long-pulse operation, nine additional spectrometers, a new line of sight array for passive spectroscopy, and a coherence imaging charge exchange spectroscopy diagnostic. Progress in data analysis includes ion temperatures and densities from multiple impurity species, a statistical comparison with x-ray crystal spectrometer measurements, neutral density measurements from thermal passive Balmer-alpha emission, and a Bayesian analysis of active hydrogen emission, which is able to infer electron density and main ion temperature profiles.

4.
Rev Sci Instrum ; 93(11): 113546, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461451

RESUMEN

A novel Motional Stark Effect spectroscopy system has been designed for application at the DIII-D tokamak. The system is optimized for studies of the poloidal and toroidal magnetic field in the plasma pedestal region with frame rates of up to 10 kHz. Light from an existing high-photon-throughput collection lens is analyzed using four single-channel f/2.8 Czerny-Turner spectrometers that use custom-made lens systems instead of mirrors. Each spectrometer has two separate outgoing legs and is operated in a positive grating order, which allows for simultaneous observations of D-alpha and D-beta spectra. Forward modeling using the code FIDASIM shows a radial resolution of the system close to 0.6 cm and sufficiently good spectral resolution when masking the high throughput light collection lens in the horizontal direction to avoid overly strong Doppler broadening of beam emission lines. Moreover, a detailed sensitivity study considering realistic levels of readout and photon noise shows that the poloidal and toroidal magnetic field strengths can be inferred with an uncertainty of less than 1%, which will allow the inference of changes of the plasma current during transient events.

5.
Rev Sci Instrum ; 93(11): 113503, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461537

RESUMEN

A new high radial resolution 2D multichannel Charge eXchange Imaging (CXI) diagnostic is under development for deployment at DIII-D. The diagnostic system will measure low-to-intermediate radial wavenumber carbon density fluctuations by observing the n = 8 - 7 (λ = 529.06 nm) C-VI emission line, resulting from charge exchange collisions between heating neutral beam atoms and the intrinsic carbon ion density. The new CXI diagnostic will provide measurements with ΔR ∼ 0.4 cm to access higher kr instabilities (kr < 8 cm-1) predicted to arise in the steep-gradient region of the H-mode pedestal. The CXI system will feature 60 fiber bundles in a 12 × 5 arrangement, with each bundle consisting of four 1 mm fibers. A custom optical system has been designed to filter and image incoming signals onto an 8 × 8 avalanche photodiode array. Additionally, a novel electronics suite has been designed and commissioned to amplify and digitize the relatively low-intensity carbon signal at a 2 MHz bandwidth. Forward modeling results of the active C-VI emission suggest sufficient signal to noise ratios to resolve turbulent fluctuations. Prototype measurements demonstrate the ability to perform high frequency pedestal measurements.

6.
Rev Sci Instrum ; 93(10): 103535, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319390

RESUMEN

Two newly developed, eight-channel, integrated Beam Emission Spectroscopy (BES) detectors have been installed at Huan-Liuqi-2A tokamak, which extends the existing 16 single-channel modular BES system with additional 16 spatial channels. The BES collects the Doppler-shifted Balmer Dα emission with a spatial resolution of 1 cm (radial) × 1.5 cm (poloidal) and a temporal resolution of 0.5 µs to measure long-wavelength (k⊥ρi < 1) density fluctuations. Compared to the modular BES, the dark noise of the integrated BES is reduced by 50%-60% on average. The signal-to-noise ratio of the integrated BES system is optimized by the high light throughput front-end optics, high quantum efficiency photodiodes, high-gain, low-noise preamplifiers, and sufficient cooling capacity provided by the thermoelectric cooling (TEC) units that maintain the detectors at -20 °C. Crosstalk between channels that share the same optical system is found to be negligible. High-quality density fluctuation data enables 2D (radial-poloidal) imaging of turbulence, which allows for multi-channel spectral analysis, multi-channel cross-correlation analysis and velocimetry analysis. Preliminary results show that BES successfully captures the spatiotemporal features of the local turbulence and obtains statistically consistent turbulence characterization results.

7.
Rev Sci Instrum ; 93(7): 073506, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922327

RESUMEN

A conceptual design for a 2D beam emission spectroscopy diagnostic system to measure ion gyro-scale plasma turbulence at Wendeslstein 7-X is described. The conceptual design identifies field-aligned viewing geometries and ports for cross-field turbulence measurements in the neutral beam volume. A 2D sightline grid covers the outer plasma region, and the grid configuration provides sufficient k-space coverage in radial and poloidal directions for ion temperature gradient and trapped-electron mode turbulence measurements. Emission intensity estimates, optical transmission losses, and detector noise levels indicate that the measurements will be sensitive to plasma density fluctuations as small as δn/n ≈ 0.5% with a bandwidth of 1 MHz. Implementation challenges include a small beam emission Doppler shift due to nearly radial heating beams and reduced optical throughput due to collection aperture limitations.

8.
Rev Sci Instrum ; 92(5): 053513, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243242

RESUMEN

An upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = Ti, v∥) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields. UF-CHERS is optimized to observe emissions from the electron exchange reaction between intrinsic C6+ and hydrogenic neutral beam injected particles near 529 nm. UF-CHERS consists of two chords separated by ∼1 cm radially, less than the turbulence correlation length in DIII-D plasmas, which enables correlated measurements to suppress incoherent electronic and photon noise. The optical components of the spectrometer include a volume-phase-holographic grating with >90% transmission between 528 and 530 nm and f/2 200-mm lenses, selected to maximize the optical efficiency and photon flux. Diffracted light from each chord is collected in eight spectral bins, each with a bandwidth of ∼0.25 nm, and detected and amplified by chilled avalanche photodiodes and custom high-gain, wide bandwidth low-noise preamplifiers to achieve the optimal signal-to-noise ratio. The resulting signals are digitized at 1 MHz, 103-104× faster than the conventional CHERS diagnostics. Spatial coverage is achieved by repositioning a motorized fiber tray between plasmas. UF-CHERS measurements will advance the understanding of turbulent ion transport and contribute to the validation of transport models and simulations.

10.
Rev Sci Instrum ; 91(8): 083503, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32872937

RESUMEN

Coated glass targets are a key component of the Wendelstein 7-X laser blow-off system that is used for impurity transport studies. The preparation and analysis of these glass targets as well as their performance is examined in this paper. The glass targets have a high laser damage threshold and are coated via physical vapor deposition with µm thick films. In addition, nm-thin layers of Ti are used as an interface layer for improved ablation efficiency and reduced coating stress. Hence, the metallic or ceramic coating has a lateral homogeneity within 2% and contaminants less than 5%, being optimal for laser ablation processing. With this method, a short (few ms) and well defined pulse of impurities with about 1017 particles can be injected close to the last closed flux surface of Wendelstein 7-X. In particular, a significant amount of atoms with a velocity of about 1 km/s enters the plasma within 1 ms. The atoms are followed by a negligible concentration of slower clusters and macro-particles. This qualifies the use of the targets and applied laser settings for impurity transport studies with the laser blow-off system in Wendelstein 7-X.

11.
Rev Sci Instrum ; 91(2): 023507, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32113444

RESUMEN

The Charge Exchange Recombination Spectroscopy (CXRS) diagnostic has become a routine diagnostic on almost all major high temperature fusion experimental devices. For the optimized stellarator Wendelstein 7-X (W7-X), a highly flexible and extensive CXRS diagnostic has been built to provide high-resolution local measurements of several important plasma parameters using the recently commissioned neutral beam heating. This paper outlines the design specifics of the W7-X CXRS system and gives examples of the initial results obtained, including typical ion temperature profiles for several common heating scenarios, toroidal flow and radial electric field derived from velocity measurements, beam attenuation via beam emission spectra, and normalized impurity density profiles under some typical plasma conditions.

12.
Rev Sci Instrum ; 89(10): 10G101, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399890

RESUMEN

This paper reports on the design and the performance of the recently upgraded X-ray imaging spectrometer systems, X-ray imaging crystal spectrometer and high resolution X-ray imaging spectrometer, installed at the optimized stellarator Wendelstein 7-X. High resolution spectra of highly ionized, He-like Si, Ar, Ti, and Fe as well as H-like Ar have been observed. A cross comparison of ion and electron temperature profiles derived from a spectral fit and tomographic inversion of Ar and Fe spectra shows a reasonable match with both the spectrometers. The also measured impurity density profiles of Ar and Fe have peaked densities at radial positions that are in qualitative agreement with the expectations from the He-like impurity fractional abundances, given the measured temperature profiles. Repeated measurements of impurity decay times have been demonstrated with an accuracy of 1 ms via injection of non-recycling Ti, Fe, and Mo impurities using a laser blow-off system.

13.
Rev Sci Instrum ; 89(10): 106101, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399901

RESUMEN

Internal diamagnetic flux measurements, with measurement loops and compensation magnetic probes inside the vacuum vessel, are now available on the ASDEX Upgrade tokamak. The measured diamagnetic flux is compared to that predicted by simulations and calculated from equilibrium reconstruction. The diamagnetic flux measured at 2 positions separated toroidally by 180° in the vacuum vessel is compared.

14.
Rev Sci Instrum ; 89(10): 10J101, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399687

RESUMEN

The B-dot probe diagnostic suite on the ASDEX Upgrade tokamak has recently been upgraded with a new 125 MHz, 14 bit resolution digitizer to study ion cyclotron emission (ICE). While classic edge emission from the low field side plasma is often observed, we also measure waves originating from the core with fast fusion protons or beam injected deuterons being a possible emission driver. Comparing the measured frequency values with ion cyclotron harmonics present in the plasma places the origin of this emission on the magnetic axis, with the fundamental hydrogen/second deuterium cyclotron harmonic matching the observed values. The actual values range from ∼27 MHz at the on-axis toroidal field BT = -1.79 T to ∼40 MHz at BT = -2.62 T. When the magnetic axis position evolves during this emission, the measured frequency values track the changes in the estimated on-axis cyclotron frequency values. Core ICE is usually a transient event lasting ∼100 ms during the neutral beam startup phase. However, in some cases, core emission occurs in steady-state plasmas and lasts for longer than 1 s. These observations suggest an attractive possibility of using a non-perturbing ICE-based diagnostic to passively monitor fusion alpha particles at the location of their birth in the plasma core, in deuterium-tritium burning devices such as ITER and DEMO.

15.
Rev Sci Instrum ; 89(10): 10F111, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399723

RESUMEN

The paper reports on the optimization process of the soft X-ray pulse height analyzer installed on the Wendelstein 7-X (W7-X) stellarator. It is a 3-channel system that records X-ray spectra in the range from 0.6 to 19.6 keV. X-ray spectra, with a temporal and spatial resolution of 100 ms and 2.5 cm (depending on selected slit sizes), respectively, are line integrated along a line-of-sight that crosses near to the plasma center. In the second W7-X operation phase with a carbon test divertor unit, light impurities, e.g., carbon and oxygen, were observed as well as mid- to high-Z elements, e.g., sulfur, chlorine, chromium, manganese, iron, and nickel. In addition, X-ray lines from several tracer elements have been observed after the laser blow-off injection of different impurities, e.g., silicon, titanium, and iron, and during discharges with prefill or a gas puff of neon or argon. These measurements were achieved by optimizing light absorber-foil selection, which defines the detected energy range, and remotely controlled pinhole size, which defines photon flux. The identification of X-ray lines was confirmed by other spectroscopic diagnostics, e.g., by the High-Efficiency XUV Overview Spectrometer, HEXOS, and high-resolution X-ray imaging spectrometer, HR-XIS.

16.
Rev Sci Instrum ; 89(7): 073505, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30068134

RESUMEN

We present a detailed overview and first results of the new laser blow-off system on the stellarator Wendelstein 7-X. The system allows impurity transport studies by the repetitive and controlled injection of different tracer ions into the plasma edge. A Nd:YAG laser is used to ablate a thin metal film, coated on a glass plate, with a repetition rate of up to 20 Hz. A remote-controlled adjustable optical system allows the variation of the laser spot diameter and enables the spot positioning to non-ablated areas on the target between laser pulses. During first experiments, clear spectral lines from higher ionization stages of the tracer ions have been observed in the X-ray to the extreme ultraviolet spectral range. The temporal behavior of the measured emission allows the estimate of transport properties, e.g., impurity transport times in the order of 100 ms. Although the strong injection of impurities is well detectable, the global plasma parameters are barely changed.

17.
Rev Sci Instrum ; 88(8): 083509, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28863658

RESUMEN

The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3°…4° and by 0.5°…1° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.

18.
Rev Sci Instrum ; 88(7): 073508, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28764552

RESUMEN

A new core charge exchange recombination spectroscopy diagnostic has been installed in the ASDEX Upgrade tokamak that is capable of measuring the impurity ion temperature, toroidal rotation, and density on both the low field side (LFS) and high field side (HFS) of the plasma. The new system features 48 lines-of-sight (LOS) with a radial resolution that varies from ±2 cm on the LFS down to ±0.75 cm on the HFS and has sufficient signal to run routinely at 10 ms and for special circumstances down to 2.5 ms integration time. The LFS-HFS ion temperature profiles provide an additional constraint on the magnetic equilibrium reconstruction, and the toroidal rotation frequency profiles are of sufficiently high quality that information on the poloidal velocity can be extracted from the LFS-HFS asymmetry. The diagnostic LOS are coupled to two flexible-wavelength spectrometers such that complete LFS-HFS profiles from two separate impurities can be imaged simultaneously, albeit with reduced radial coverage. More frequently, the systems measure the same impurity providing very detailed information on the chosen species. Care has been taken to calibrate the systems as accurately as possible and to include in the data analysis any effects that could lead to spurious temperatures or rotations.

19.
Rev Sci Instrum ; 88(4): 043103, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28456224

RESUMEN

In this work, a new type of high through-put Czerny-Turner spectrometer has been developed which allows us to acquire multiple channels simultaneously with a repetition time on the order of 10 µs at different wavelengths. The spectrometer has been coupled to the edge charge exchange recombination system at ASDEX Upgrade which has been recently refurbished with new lines of sight. Construction features, calibration methods, and initial measurements obtained with the new setup will be presented.

20.
Rev Sci Instrum ; 87(5): 053509, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250425

RESUMEN

Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA