Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(19): 10406-10413, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341145

RESUMEN

Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.


Asunto(s)
Abejas/virología , Dicistroviridae/metabolismo , Interacciones Huésped-Patógeno/fisiología , Animales , Apicultura/métodos , Abejas/genética , Conducta Animal , Colapso de Colonias/epidemiología , Virus ADN/genética , Virus ADN/metabolismo , Dicistroviridae/genética , Dicistroviridae/patogenicidad , Transmisión de Enfermedad Infecciosa/veterinaria , Ácaros/genética , Polinización , ARN Bicatenario , Conducta Social , Virulencia
2.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404777

RESUMEN

Parasites can manipulate host behaviour to increase their own transmission and fitness, but the genomic mechanisms by which parasites manipulate hosts are not well understood. We investigated the relationship between the social paper wasp, Polistes dominula, and its parasite, Xenos vesparum (Insecta: Strepsiptera), to understand the effects of an obligate endoparasitoid on its host's brain transcriptome. Previous research suggests that X. vesparum shifts aspects of host social caste-related behaviour and physiology in ways that benefit the parasitoid. We hypothesized that X. vesparum-infested (stylopized) females would show a shift in caste-related brain gene expression. Specifically, we predicted that stylopized females, who would normally be workers, would show gene expression patterns resembling pre-overwintering queens (gynes), reflecting gyne-like changes in behaviour. We used RNA-sequencing data to characterize patterns of brain gene expression in stylopized females and compared these with those of unstylopized workers and gynes. In support of our hypothesis, we found that stylopized females, despite sharing numerous physiological and life-history characteristics with members of the worker caste, show gyne-shifted brain expression patterns. These data suggest that the parasitoid affects its host by exploiting phenotypic plasticity related to social caste, thus shifting naturally occurring social behaviour in a way that is beneficial to the parasitoid.


Asunto(s)
Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Transcriptoma , Avispas/fisiología , Animales , Encéfalo/metabolismo , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos/fisiología , Fenotipo , Análisis de Secuencia de ADN , Avispas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA