Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods ; 66(3): 433-40, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792917

RESUMEN

The Gal4-UAS regulatory system of yeast is widely used to modulate gene expression in Drosophila; however, there are limitations to its usefulness in transgenic zebrafish, owing to progressive methylation and silencing of the CpG-rich multicopy upstream activation sequence. Although a modified, less repetitive UAS construct may overcome this problem, it is highly desirable to have additional transcriptional regulatory systems that can be applied independently or in combination with the Gal4/UAS system for intersectional gene expression. The Q transcriptional regulatory system of Neurospora crassa functions similarly to Gal4/UAS. QF is a transcriptional activator that binds to the QUAS upstream regulatory sequence to drive reporter gene expression. Unlike Gal4, the QF binding site does not contain essential CpG dinucleotide sequences that are subject to DNA methylation. The QS protein is a repressor of QF mediated transcriptional activation akin to Gal80. The functionality of the Q system has been demonstrated in Drosophila and Caenorhabditis elegans and we now report its successful application to a vertebrate model, the zebrafish, Danio rerio. Several tissue-specific promoters were used to drive QF expression in stable transgenic lines, as assessed by activation of a QUAS:GFP transgene. The QS repressor was found to dramatically reduce QF activity in injected zebrafish embryos; however, a similar repression has not yet been achieved in transgenic animals expressing QS under the control of ubiquitous promoters. A dual reporter construct containing both QUAS and UAS, each upstream of different fluorescent proteins was also generated and tested in transient assays, demonstrating that the two systems can work in parallel within the same cell. The adoption of the Q system should greatly increase the versatility and power of transgenic approaches for regulating gene expression in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ingeniería Genética/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Regulación de la Expresión Génica/genética , Genes Fúngicos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Neurospora crassa/genética , Factores de Transcripción/genética , Activación Transcripcional
2.
PLoS One ; 6(6): e20309, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687713

RESUMEN

Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2(+)) and neural plate border zone (pax3(+)), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5' regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show direct in vivo evidence of YAP's role in regulating pax3 neural crest expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Placa Neural/citología , Placa Neural/embriología , Células-Madre Neurales/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Transactivadores/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Vértebra Cervical Axis/crecimiento & desarrollo , Vértebra Cervical Axis/metabolismo , Secuencia de Bases , Sitios de Unión , Biomarcadores/metabolismo , Diferenciación Celular , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Células Epidérmicas , Gastrulación , Humanos , Datos de Secuencia Molecular , Músculos/citología , Cresta Neural/citología , Cresta Neural/metabolismo , Células-Madre Neurales/citología , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX3 , Estructura Terciaria de Proteína , Transporte de Proteínas , Factores de Transcripción de Dominio TEA , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis , Proteínas Señalizadoras YAP , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA