Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurourol Urodyn ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979835

RESUMEN

AIMS: This study aimed to determine the preventive effects of emodin on cyclophosphamide (CYP)-induced cystitis and to explore the molecular mechanism. METHODS: In vivo, mice were modeled by CYP. Before a half hour of CYP treatment, Jumonji domain-containing protein-3 (JMJD3) inhibitors (GSK-J4) and emodin were used to treat CYP model mice. Bladder samples were stained for hematoxylin-eosin and toluidine blue. Next, JMJD3 was quantified by immunofluorescence staining, RT-PCR, and Western blot. CXCR3 was quantified by Western blot and ELISA. In vitro, before stimulated by lipopolysaccharide (LPS), human bladder smooth muscle cells (hBSMCs) were transfected with pcDNA3.1-JMJD3 plasmids, shRNA-JMJD3 plasmids or pretreated with emodin. Collected cells to detect JMJD3 and CXCR3 ligands again; collected supernatant of culture for Transwell assay. Finally, as the JAK2 inhibitor, AG490 was used to pretreat LPS-induced hBSMCs. Western blot was performed to quantify proteins. RESULTS: Emodin inhibited mast cell migration and suppressed the expression of JMJD3, CXCR3, and CXCR3 ligands, not only in vivo but also in vitro. The pharmacological effects of emodin were similar to GSK-J4 or JMJD3 inhibition. In addition, emodin significantly downregulated the phosphorylation of JAK2 and STAT3, and inhibited JMJD3/CXCR3 axis transduction like AG490. CONCLUSION: Emodin has a preventive effect on cystitis by inhibiting mast cell migration through inhibition of the JAK2/STAT3/JMJD3/CXCR3 signaling pathway.

2.
ACS Appl Mater Interfaces ; 12(9): 10142-10155, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043350

RESUMEN

Specific chemical reactions only happen in the tumor region and produce abundant special chemicals to in situ trigger a train of biological and pathological effects that may enable tumor-specific curative effects to treat cancer without causing serious side effects on normal cells or organs. Chemodynamic therapy (CDT) is a rising tactic for cancer therapy, which induces cancer cell death via a localized Fenton reaction. However, the tumor therapeutic effect is limited by the efficiency of the chemical reaction and relies heavily on the catalyst. Here, we constructed hollow porous carbon coated FeS2 (HPFeS2@C)-based nanocatalysts for triple-enhanced CDT. Tannic acid was encapsulated in HPFeS2@C for reducing Fe3+ to Fe2+, which had a better catalytic activity to accelerate the Fenton reaction. Afterward, glucose oxidase (GOx) in nanocatalysts could consume glucose in the tumor microenvironment and in situ synchronously produce H2O2, which could improve Fenton reaction efficiency. Meanwhile, the consumption of glucose could lead to the starvation effect for cancer starvation therapy. The photothermal effects of HPFeS2@C could generate heat, which further sped up the Fenton process and implemented synergetic photothermal therapy/starvation therapy/CDT. The biodistribution of nanoparticles was investigated by multimodal magnetic resonance, ultrasound, and photoacoustic imaging. These nanocatalysts could trigger the catalytic Fenton reaction at a high degree, which might provide a good paradigm for nanocatalytic tumor therapy.


Asunto(s)
Carbono/química , Compuestos Ferrosos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/química , Animales , Compuestos Ferrosos/administración & dosificación , Humanos , Ratones , Neoplasias/diagnóstico por imagen , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Porosidad
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2403-2410, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31102789

RESUMEN

Chronic cystitis is characterized by the hyperplasia and fibrosis of the bladder wall as well as attenuated compliance of the bladder. To further unravel its underlying molecular mechanism, the role of NFκB-JMJD3 signaling pathway in cystitis induced bladder fibrosis was investigated. Jmjd3 and Col1/3 expression was detected in a cystitis mouse model that was developed by intraperitoneal injection of cyclophosphamide (CYP). Human bladder smooth muscle cells (hBSMCs) were stimulated in vitro with lipopolysaccharide (LPS), and the cell proliferation and collagen accumulation were detected using EdU, CCK8, flow cytometry, qPCR, western blotting and immunofluorescence assays. Furthermore, the effects of NFκB and JMJD3 on cell proliferation and collagen accumulation were investigated using its selective antagonists, JSH23 and GSK-J4, respectively. CYP induced cystitis significantly increased Jmjd3, Col1 and Col3 expression in the bladder muscle cells. Furthermore, LPS stimulation markedly activated NFκB signaling and elevated JMJD3 expression in hBSMCs, and the activation of NFκB-JMJD3 signaling significantly promoted cell proliferation and collagen accumulation by upregulating CCND1 and COL1/3 expression, respectively. Our study reveals the critical role of NFκB-JMJD3 signaling in cystitis induced bladder reconstruction by regulating hBSMC proliferation and extracellular matrix (ECM) deposition, and these findings provide an avenue for effective treatment of patients with cystitis.


Asunto(s)
Proliferación Celular , Colágeno/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Animales , Benzazepinas/farmacología , Proliferación Celular/efectos de los fármacos , Colágeno/genética , Cistitis/inducido químicamente , Cistitis/patología , Modelos Animales de Enfermedad , Femenino , Fibrosis , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fenilendiaminas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Vejiga Urinaria/citología , Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA