Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 123(43): 9272-9280, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31584819

RESUMEN

Building structures with hierarchical order through the self-assembly of smaller blocks is not only a prerogative of nature, but also a strategy to design artificial materials with tailored functions. We explore in simulation the spontaneous assembly of colloidal particles into extended structures, using spheres and size-asymmetric dimers as solute particles, while treating the solvent implicitly. Besides rigid cores for all particles, we assume an effective short-range attraction between spheres and small monomers to promote, through elementary rules, dimer-mediated aggregation of spheres. Starting from a completely disordered configuration, we follow the evolution of the system at low temperature and density, as a function of the relative concentration of the two species. When spheres and large monomers are of same size, we observe the onset of elongated aggregates of spheres, either disconnected or cross-linked, and a crystalline bilayer. As spheres grow bigger, the self-assembling scenario changes, getting richer overall, with the addition of flexible membrane sheets with crystalline order and monolayer vesicles. With this wide assortment of structures, our model can serve as a viable template to achieve a better control of self-assembly in dilute suspensions of microsized particles.

2.
J Chem Phys ; 144(23): 234504, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27334176

RESUMEN

We study a pure fluid of heteronuclear sticky Janus dumbbells, considered to be the result of complete chemical association between unlike species in an initially equimolar mixture of hard spheres (species A) and sticky hard spheres (species B) with different diameters. The B spheres are particles whose attractive surface layer is infinitely thin. Wertheim's two-density integral equations are employed to describe the mixture of AB dumbbells together with unbound A and B monomers. After Baxter factorization, these equations are solved analytically within the associative Percus-Yevick approximation. The limit of complete association is taken at the end. The present paper extends to the more general, heteronuclear case of A and B species with size asymmetry a previous study by Wu and Chiew [J. Chem. Phys. 115, 6641 (2001)], which was restricted to dumbbells with equal monomer diameters. Furthermore, the solution for the Baxter factor correlation functions qij (αß)(r) is determined here in a fully analytic way, since we have been able to find explicit analytic expressions for all the intervening parameters.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26382374

RESUMEN

Phase transitions in one-dimensional classical fluids are usually ruled out by using van Hove's theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)] has recently provided evidence of an infinite sequence of low-temperature cluster phases, however, also suggesting that upon pushing the simulation forward what seemed a true transition may eventually prove to be only a sharp crossover. We hereby investigate this problem theoretically by use of three different and increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice model of clusters, and the exact treatment of a system of point clusters in the continuum) to conclude that the alleged transitions of the one-dimensional GEM-4 system are likely just crossovers.

4.
J Chem Phys ; 139(16): 164501, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24182043

RESUMEN

We focus on the second virial coefficient B2 of fluids with molecules interacting through hard-sphere potentials plus very short-ranged attractions, namely, with a range of attraction smaller than half hard-sphere diameter. This kind of interactions is found in colloidal or protein suspensions, while the interest in B2 stems from the relation between this quantity and some other properties of these fluid systems. Since the SCOZA (Self-Consistent Ornstein-Zernike Approximation) integral equation is known to yield accurate thermodynamic and structural predictions even near phase transitions and in the critical region, we investigate B2(SCOZA) and compare it with B2(exact), for some typical potential models. The aim of the paper is however twofold. First, by expanding in powers of density the condition of thermodynamic consistency included in the SCOZA integral equation, a general analytic expression for B2(SCOZA) is derived. For a given potential model, a comparison between B2(SCOZA) and B2(exact) may help to estimate the regimes where the SCOZA closure is reliable. Second, following the Vliegenthart-Lekkerkerker (VL) and Noro-Frenkel suggestions, the relationship between the critical B2 and the critical temperature Tc is discussed in detail for two prototype models: the square-well (SW) potential and the hard-sphere attractive Yukawa (HSY) one. The known simulation data for the SW model are revisited, while for the HSY model new SCOZA results have been generated. Although B2(HSY) at the critical temperature is found to be a slowly varying function of the range of Yukawa attraction ΔY over a wide interval of ΔY, it turns out to diverge as ΔY vanishes. For fluids with very short-ranged attractions, such a behavior contrasts with the VL assumption that B2 at the critical temperature should be nearly independent of the range of attraction. A very simple analytic representation is found for the available Monte Carlo data for Tc(HSY) and B2(HSY) as functions of the range of attraction, for ΔY smaller than half hard-sphere diameter.


Asunto(s)
Modelos Moleculares , Proteínas/química , Temperatura , Coloides , Método de Montecarlo , Suspensiones
5.
Interdiscip Sci ; 3(4): 251-65, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22179759

RESUMEN

Application of integral equation theory to complex fluids is reviewed, with particular emphasis to the effects of polydispersity and anisotropy on their structural and thermodynamic properties. Both analytical and numerical solutions of integral equations are discussed within the context of a set of minimal potential models that have been widely used in the literature. While other popular theoretical tools, such as numerical simulations and density functional theory, are superior for quantitative and accurate predictions, we argue that integral equation theory still provides, as in simple fluids, an invaluable technique that is able to capture the main essential features of a complex system, at a much lower computational cost. In addition, it can provide a detailed description of the angular dependence in arbitrary frame, unlike numerical simulations where this information is frequently hampered by insufficient statistics. Applications to colloidal mixtures, globular proteins and patchy colloids are discussed, within a unified framework.


Asunto(s)
Coloides/química , Modelos Teóricos , Proteínas/química , Soluciones/química , Anisotropía , Conceptos Matemáticos , Modelos Químicos , Termodinámica
6.
J Chem Phys ; 134(12): 124504, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21456673

RESUMEN

For fluids of molecules with short-ranged hard-sphere-Yukawa (HSY) interactions, it is proven that the Noro-Frenkel "extended law of corresponding states" cannot be applied down to the vanishing attraction range, since the exact HSY second virial coefficient diverges in such a limit. It is also shown that, besides Baxter's original approach, a fully correct alternative definition of "adhesive hard spheres" can be obtained by taking the vanishing-range-limit (sticky limit) not of a Yukawa tail, as is commonly done, but of a slightly different potential with a logarithmic-Yukawa attraction.


Asunto(s)
Adhesivos/química , Dureza , Simulación por Computador , Modelos Químicos
8.
J Chem Phys ; 133(3): 034511, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20649341

RESUMEN

We consider a strongly idealized model for polar fluids, which consists of spherical particles, having, in addition to a hard-core repulsion, a "surface dipolar" interaction, acting only when particles are exactly at contact. A fully analytic solution of the molecular Orstein-Zernike equation is found for this potential, within the Percus-Yevick approximation complemented by a linearization of the angular dependence on molecular orientations (Percus-Yevick closure with orientational linearization). Numerical results are also presented in a detailed analysis about the local orientational structure. From the pair correlation function g(1,2), we first derive the best orientations of a test particle which explores the space around an arbitrary reference molecule. Then some local and global order parameters, related to the polarization induced by the reference particle, are also calculated. The local structure of this model with only short-ranged anisotropic interactions turns out to be, at least within the chosen approximation, qualitatively different from that of hard spheres with fully long-ranged dipolar potentials.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 1): 061207, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20365161

RESUMEN

We discuss some interesting physical features stemming from our previous analytical study of a simple model of a fluid with dipolarlike interactions of very short range in addition to the usual isotropic Baxter potential for adhesive spheres. While the isotropic part is found to rule the global structural and thermodynamical equilibrium properties of the fluid, the weaker anisotropic part gives rise to an interesting short-range local ordering of nearly spherical condensation clusters, containing short portions of chains having nose-to-tail parallel alignment, which runs antiparallel to adjacent similar chains.


Asunto(s)
Microfluídica/métodos , Modelos Químicos , Modelos Moleculares , Soluciones/química , Adhesividad , Anisotropía , Simulación por Computador , Microesferas , Conformación Molecular
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 1): 021201, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18850821

RESUMEN

We consider an anisotropic version of Baxter's model of "sticky hard spheres," where a nonuniform adhesion is implemented by adding, to an isotropic surface attraction, an appropriate "dipolar sticky" correction (positive or negative, depending on the mutual orientation of the molecules). The resulting nonuniform adhesion varies continuously, in such a way that in each molecule one hemisphere is "stickier" than the other. We derive a complete analytic solution by extending a formalism [M. S. Wertheim, J. Chem. Phys. 55, 4281 (1971)] devised for dipolar hard spheres. Unlike Wertheim's solution, which refers to the "mean spherical approximation," we employ a Percus-Yevick closure with orientational linearization, which is expected to be more reliable. We obtain analytic expressions for the orientation-dependent pair correlation function g(1,2) . Only one equation for a parameter K has to be solved numerically. We also provide very accurate expressions which reproduce K as well as some parameters, Lambda1 and Lambda2, of the required Baxter factor correlation functions with a relative error smaller than 1%. We give a physical interpretation of the effects of the anisotropic adhesion on the g(1,2) . The model could be useful for understanding structural ordering in complex fluids within a unified picture.

11.
J Chem Phys ; 127(23): 234507, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18154400

RESUMEN

We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a "sticky" Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.

12.
J Chem Phys ; 125(16): 164504, 2006 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-17092102

RESUMEN

We study the effects of size polydispersity on the gas-liquid phase behavior of mixtures of sticky hard spheres. To achieve this, the system of coupled quadratic equations for the contact values of the partial cavity functions of the Percus-Yevick solution [R. J. Baxter, J. Chem. Phys. 49, 2770 (1968)] is solved within a perturbation expansion in the polydispersity, i.e., the normalized width of the size distribution. This allows us to make predictions for various thermodynamic quantities which can be tested against numerical simulations and experiments. In particular, we determine the leading order effects of size polydispersity on the cloud curve delimiting the region of two-phase coexistence and on the associated shadow curve; we also study the extent of size fractionation between the coexisting phases. Different choices for the size dependence of the adhesion strengths are examined carefully; the Asakura-Oosawa model [J. Chem. Phys. 22, 1255 (1954)] of a mixture of polydisperse colloids and small polymers is studied as a specific example.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 1): 051407, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17279909

RESUMEN

We investigate the dependence of the stickiness parameters tij=1/(12tauij)--where the tauij are the conventional Baxter parameters--on the solute diameters sigmai and sigmaj in multicomponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions between reverse micelles of water-in-oil microemulsions). We map each of these potentials onto an equivalent SHS model by requiring the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the size-dependence of tij(T,sigmai,sigmaj) can be approximated by essentially the same expression, i.e., a simple polynomial in the variable sigmaisigmaj/sigmaij2, with coefficients depending on the temperature T, or--for depletion interactions--on the packing fraction eta0 of the depletant particles.


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestructura , Adhesividad , Simulación por Computador , Elasticidad , Dureza , Micelas , Tamaño de la Partícula , Soluciones , Electricidad Estática , Estrés Mecánico
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(1 Pt 1): 011503, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16089966

RESUMEN

The thermodynamic instabilities of a binary mixture of sticky hard spheres (SHS) in the modified mean spherical approximation (mMSA) and the Percus-Yevick (PY) approximation are investigated using an approach devised by Chen and Forstmann [corrected] [J. Chem. Phys. [corrected] 97, 3696 (1992)]. This scheme hinges on a diagonalization of the matrix of second functional derivatives of the grand canonical potential with respect to the particle density fluctuations. The zeroes of the smallest eigenvalue and the direction of the relative eigenvector characterize the instability uniquely. We explicitly compute three different classes of examples. For a symmetrical binary mixture, analytical calculations, both for mMSA and for PY, predict that when the strength of adhesiveness between like particles is smaller than the one between unlike particles, only a pure condensation spinodal exists; in the opposite regime, a pure demixing spinodal appears at high densities. We then compare the mMSA and PY results for a mixture where like particles interact as hard spheres (HS) and unlike particles as SHS, and for a mixture of HS in a SHS fluid. In these cases, even though the mMSA and PY spinodals are quantitatively and qualitatively very different from each other, we prove that they have the same kind of instabilities. Finally, we study the mMSA solution for five different mixtures obtained by setting the stickiness parameters equal to five different functions of the hard sphere diameters. We find that four of the five mixtures exhibit very different type of instabilities. Our results are expected to provide a further step toward a more thoughtful application of SHS models to colloidal fluids.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 1): 031108, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15903407

RESUMEN

The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), of a simple perturbative approximation to the radial distribution functions (RDF's), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent small-angle-scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein (beta-lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and Percus-Yevick closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.


Asunto(s)
Mezclas Complejas/química , Lactoglobulinas/química , Modelos Químicos , Complejos Multiproteicos/química , Mapeo de Interacción de Proteínas/métodos , Sitios de Unión , Simulación por Computador , Unión Proteica , Pliegue de Proteína , Soluciones
16.
J Chem Phys ; 122(3): 34901, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15740221

RESUMEN

We study the polydisperse Baxter model of sticky hard spheres (SHS) in the modified mean spherical approximation (mMSA). This closure is known to be the zero-order approximation C0 of the Percus-Yevick closure in a density expansion. The simplicity of the closure allows a full analytical study of the model. In particular we study stability boundaries, the percolation threshold, and the gas-liquid coexistence curves. Various possible subcases of the model are treated in details. Although the detailed behavior depends upon the particularly chosen case, we find that, in general, polydispersity inhibits instabilities, increases the extent of the nonpercolating phase, and diminishes the size of the gas-liquid coexistence region. We also consider the first-order improvement of the mMSA (C0) closure (C1) and compare the percolation and gas-liquid boundaries for the one-component system with recent Monte Carlo simulations. Our results provide a qualitative understanding of the effect of polydispersity on SHS models and are expected to shed new light on the applicability of SHS models for colloidal mixtures.

17.
J Chem Phys ; 120(10): 4742-54, 2004 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-15267334

RESUMEN

We discuss structural and thermodynamical properties of Baxter's adhesive hard sphere model within a class of closures which includes the Percus-Yevick (PY) one. The common feature of all these closures is to have a direct correlation function vanishing beyond a certain range, each closure being identified by a different approximation within the original square-well region. This allows a common analytical solution of the Ornstein-Zernike integral equation, with the cavity function playing a privileged role. A careful analytical treatment of the equation of state is reported. Numerical comparison with Monte Carlo simulations shows that the PY approximation lies between simpler closures, which may yield less accurate predictions but are easily extensible to multicomponent fluids, and more sophisticate closures which give more precise predictions but can hardly be extended to mixtures. In regimes typical for colloidal and protein solutions, however, it is found that the perturbative closures, even when limited to first order, produce satisfactory results.

18.
Biophys J ; 82(4): 2165-75, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11916872

RESUMEN

In this work an improved methodology for studying interactions of proteins in solution by small-angle scattering is presented. Unlike the most common approach, where the protein-protein correlation functions g(ij)(r) are approximated by their zero-density limit (i.e., the Boltzmann factor), we propose a more accurate representation of g(ij)(r) that takes into account terms up to the first order in the density expansion of the mean-force potential. This improvement is expected to be particularly effective in the case of strong protein-protein interactions at intermediate concentrations. The method is applied to analyze small-angle x-ray scattering data obtained as a function of the ionic strength (from 7 to 507 mM) from acidic solutions of beta-lactoglobulin at the fixed concentration of 10 gl(-1). The results are compared with those obtained using the zero-density approximation and show significant improvement, particularly in the more demanding case of low ionic strength.


Asunto(s)
Proteínas/química , Animales , Biofisica/métodos , Lactoglobulinas/química , Leche/química , Modelos Estadísticos , Método de Montecarlo , Unión Proteica , Dispersión de Radiación , Espectrofotometría , Termodinámica , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA