RESUMEN
The sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca(2+) transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca(2+) channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (DeltaH(cal)) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg(2+) or ruthenium red, conditions that close the ryanodine Ca(2+) channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the DeltaH(cal) values of ATP hydrolysis increased significantly. Neither Mg(2+) nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the DeltaH(cal) of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca(2+) channel is opened or closed.
Asunto(s)
Músculo Esquelético/enzimología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Termogénesis/fisiología , Animales , Western Blotting , Calcio/metabolismo , Músculo Esquelético/fisiología , Conejos , Retículo Sarcoplasmático/fisiologíaRESUMEN
The sarcoplasmic reticulum (SR) is composed of two fractions, the heavy fraction that contains proteins involved in Ca2+ release, and the light fraction enriched in Ca(2+)-ATPase (SERCA), an enzyme responsible for Ca2+ transport from the cytosol to the lumen of SR. It is known that in red muscle thyroid hormones regulate the expression of SERCA 1 and SERCA 2 isoforms. Here we show the effects of thyroid hormone on SERCA expression and distribution in light and heavy SR fractions from rabbit white and red muscles. In hyperthyroid red muscle there is an increase of SERCA 1 and a decrease of SERCA 2 expression. This is far more pronounced in the heavy than in the light SR fraction. As a result, the rates of Ca(2+)- ATPase activity and Ca(2+)-uptake by the heavy vesicles are increased. In hypothyroidism we observed a decrease in SERCA 1 and no changes in the amount of SERCA 2 expressed. This promoted a decrease of both Ca(2+)-uptake and Ca(2+)-ATPase activity. While the major differences in hyperthyroidism were found in the heavy SR fraction, the effects of hypothyroidism were restricted to light SR fraction. In white muscle we did not observe any significant changes in either hypo- or hyperthyroidism in both SR fractions. Thus, the regulation of SERCA isoforms by thyroid hormones is not only muscle specific but also varies depending on the subcellular compartment analyzed. These changes might correspond to the molecular basis of the altered contraction and relaxation rates detected in thyroid dysfunction.
Asunto(s)
Señalización del Calcio , ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/enzimología , Hormonas Tiroideas/metabolismo , Animales , Hipertiroidismo/inducido químicamente , Hipertiroidismo/enzimología , Hipotiroidismo/inducido químicamente , Hipotiroidismo/enzimología , Isoenzimas/metabolismo , Conejos , ATPasas Transportadoras de Calcio del Retículo SarcoplásmicoRESUMEN
The Ca2+-ATPase (SERCA) found in vesicles derived from the sarco/endoplasmic reticulum vesicles of rats brown adipose tissue and rabbit white muscle were identified by gel electrophoresis, Western blot, electron microscopy and immunolabeling with gold particles. In both tissues, the isoform found was SERCA 1. The Ca2+ affinity of the fat SERCA 1 was different from the muscle isoform. The degree of uncoupling is estimated measuring the ratio between Ca2+ transport and ATP cleaved. In brown fat vesicles the degree of uncoupling varied depending on the Ca2+ concentration of the medium. This was not observed in vesicles derived from muscle. At all Ca2+ concentrations tested, the uncoupling was not related to Ca2+ leakage from the membrane and was far more pronounced in fat than in muscle vesicle. When a Ca2+ gradient was formed across the vesicles membrane the heat released during ATP hydrolysis varied between 22 and 26 Kcal/mol in both fat and muscle vesicles but in the absence of a gradient the heat released was 17 Kcal/mol in fat and 12 Kcal/mol in muscle. The data reported indicate that the SERCA 1 of brown adipocytes is far more thermogenic than the white muscle SERCA 1, and suggest that, in addition to storing Ca2+ inside the endoplasmic reticulum, the SERCA 1 may represent a source of heat production contributing to the thermogenic function of brown adipose tissue.