Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057451

RESUMEN

This study describes the development of hydrogel formulations with ionic crosslinking capacity and photocatalytic characteristics. The objective of this research is to provide an effective, accessible, "green", and facile route for the decontamination of chemical warfare agents (CWAs, namely the blistering agent-mustard gas/sulfur mustard (HD)) from contaminated surfaces, by decomposition and entrapment of CWAs and their degradation products inside the hydrogel films generated "on-site". The decontamination of the notorious warfare agent HD was successfully achieved through a dual hydrolytic-photocatalytic degradation process. Subsequently, the post-decontamination residues were encapsulated within a hydrogel membrane film produced via an ionic crosslinking mechanism. Polyvinyl alcohol (PVA) and sodium alginate (ALG) are the primary constituents of the decontaminating formulations. These polymeric components were chosen for this application due to their cost-effectiveness, versatility, and their ability to form hydrogen bonds, facilitating hydrogel formation. In the presence of divalent metallic ions, ALG undergoes ionic crosslinking, resulting in rapid gelation. This facilitated prompt PVA-ALG film curing and allowed for immediate decontamination of targeted surfaces. Additionally, bentonite nanoclay, titanium nanoparticles, and a tetrasulfonated nickel phthalocyanine (NiPc) derivative were incorporated into the formulations to enhance absorption capacity, improve mechanical properties, and confer photocatalytic activity to the hydrogels obtained via Zn2+-mediated ionic crosslinking. The resulting hydrogels underwent characterization using a variety of analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscometry, and mechanical analysis (shear, tensile, and compression tests), as well as swelling investigations, to establish the optimal formulations for CWA decontamination applications. The introduction of the fillers led to an increase in the maximum strain up to 0.14 MPa (maximum tensile resistance) and 0.39 MPa (maximum compressive stress). The UV-Vis characterization of the hydrogels allowed the determination of the band-gap value and absorption domain. A gas chromatography-mass spectrometry assay was employed to evaluate the decontamination efficacy for a chemical warfare agent (sulfur mustard-HD) and confirmed that the ionic crosslinked hydrogel films achieved decontamination efficiencies of up to 92.3%. Furthermore, the presence of the photocatalytic species can facilitate the degradation of up to 90% of the HD removed from the surface and entrapped inside the hydrogel matrix, which renders the post-decontamination residue significantly less dangerous.

2.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475322

RESUMEN

Water pollution is becoming a great concern at the global level due to highly polluted effluents, which are charged year by year with increasing amounts of organic residues, dyes, pharmaceuticals and heavy metals. For some of these pollutants, the industrial treatment of wastewater is still relevant. Yet, in some cases, such as pharmaceuticals, specific treatment schemes are urgently required. Therefore, the present study describes the synthesis and evaluation of promising cryostructured composite adsorbents based on chitosan containing native minerals and two types of reinforcement materials (functionalized kaolin and synthetic silicate microparticles). The targeted pharmaceuticals refer to the ciprofloxacin (CIP) antibiotic and the carbamazepine (CBZ) drug, for which the current water treatment process seem to be less efficient, making them appear in exceedingly high concentrations, even in tap water. The study reveals first the progress made for improving the mechanical stability and resilience to water disintegration, as a function of pH, of chitosan-based cryostructures. Further on, a retention study shows that both pharmaceuticals are retained with high efficiency (up to 85.94% CIP and 86.38% CBZ) from diluted aqueous solutions.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37887926

RESUMEN

This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.

4.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571071

RESUMEN

In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.

5.
Gels ; 9(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37367113

RESUMEN

This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan-biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.

6.
Pharmaceutics ; 15(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37376037

RESUMEN

Skin infections are frequently treated via intravenous or oral administration of antibiotics, which can lead to serious adverse effects and may sometimes contribute to the proliferation of resistant bacterial strains. Skin represents a convenient pathway for delivering therapeutic compounds, ensured by the high number of blood vessels and amount of lymphatic fluids in the cutaneous tissues, which are systematically connected to the rest of the body. This study provides a novel, straightforward method to obtain nafcillin-loaded photocrosslinkable nanocomposite hydrogels and demonstrates their performance as drug carriers and antimicrobial efficacy against Gram-positive bacteria. The novel formulations obtained, based on polyvinylpyrrolidone, tri(ethylene glycol) divinyl ether crosslinker, hydrophilic bentonite nanoclay, and/or two types of photoactive (TiO2 and ZnO) nanofillers, were characterized using various analytical methods (transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), mechanical tests (tension, compression, and shear), ultraviolet-visible spectroscopy (UV-Vis), swelling investigations, and via specific microbiological assays ("agar disc diffusion method" and "time-kill test"). The results reveal that the nanocomposite hydrogel possessed high mechanical resistance, good swelling abilities, and good antimicrobial activity, demonstrating a decrease in the bacteria growth between 3log10 and 2log10 after one hour of direct contact with S. aureus.

7.
Polymers (Basel) ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36236149

RESUMEN

In this study, ligand-free nanogels (LFNGs) as potential antivenom mimics were developed with the aim of preventing hypersensitivity and other side effects following massive bee attacks. For this purpose, poly (ethylene glycol) diacrylate was chosen as a main synthetic biocompatible matrix to prepare the experimental LFNGs. The overall concept uses inverse mini-emulsion polymerization as the main route to deliver nanogel caps with complementary cavities for phospholipase A2 (PLA2) from bee venom, created artificially with the use of molecular imprinting (MI) technologies. The morphology and the hydrodynamic features of the nanogels were confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. The following rebinding experiments evidenced the specificity of molecularly imprinted LFNG for PLA2, with rebinding capacities up to 8-fold higher compared to the reference non-imprinted nanogel, while the in vitro binding assays of PLA2 from commercial bee venom indicated that such synthetic nanogels are able to recognize and retain the targeted PLA2 enzyme. The results were finally collaborated with in vitro cell-viability experiments and resulted in a strong belief that such LFNG may actually be used for future therapies against bee envenomation.

8.
Polymers (Basel) ; 13(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34833298

RESUMEN

In the context of imminent threats concerning biological and chemical warfare agents, the aim of this study was the development of a new method for biological and chemical decontamination, employing non-toxic, film-forming, water-based biodegradable solutions, using a nano sized reagent together with bentonite as trapping agents for the biological and chemical contaminants. Bentonite-supported nanoparticles of Cu, TiO2, and Ag were successfully synthesized and dispersed in a polyvinyl alcohol (PVA)/glycerol (GLY) aqueous solution. The decontamination effectiveness of the proposed solutions was evaluated by qualitative and quantitative analytical techniques on various micro-organisms, with sulfur mustard (HD) and dimethyl methylphosphonate (DMMP) as contaminants. The results indicate that the peelable active nanocomposite films can be successfully used on contaminated surfaces to neutralize and entrap the hazardous materials and their degradation products. Mechanical and thermal characterization of the polymeric films was also performed to validate the decontamination solution's potential as peelable-film generating materials. The removal efficacy from the contaminated surfaces for the tested micro-organisms varied between 93% and 97%, while for the chemical agent HD, the highest decontamination factor obtained was 90.89%. DMMP was almost completely removed from the contaminated surfaces, and a decontamination factor of 99.97% was obtained.

9.
J Hazard Mater ; 399: 123026, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32516646

RESUMEN

Despite major efforts to combat pollution, the presence of pathogenic bacteria is still detected in surface water, soil and even crops due to poor purification of domestic and industrial wastewaters. Therefore, we have designed molecularly imprinted polymer films and quaternary ammonium-functionalized- kaolin microparticles to target specifically Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) in wastewaters and ensure a higher purification rate by working in tandem. According to the bacteriological indicators, a reduction by 90 % was registered for GNB (total coliforms and Escherichia coli O157) and by 77 % for GPB (Clostridium perfringens) in wastewaters. The reduction rates were confirmed when using pathogen genetic markers to quantify particular types of GNB and GPB, like Salmonella typhimurium (reduction up to 100 %),Campylobacter jejuni (reduction up to 70 %), Enterococcus faecalis (reduction up to 81 %), Clostridium perfringens (reduction up to 97 %) and Shiga toxin-producing Escherichia coli (reduction up to 64 %). In order to understand the bactericidal activity of prepared films and microparticles, we have performed several key analyses such as Cryo-TEM, to highlight the auto-assembly mechanism of components during the films formation, and 29 Si/13 C CP/MAS NMR, to reveal the way quaternary ammonium groups are grafted on the surface of kaolin microparticles.


Asunto(s)
Compuestos de Amonio , Escherichia coli O157 , Bacterias , Bacterias Gramnegativas , Aguas Residuales
10.
Nanomaterials (Basel) ; 10(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979174

RESUMEN

This study presents the design of novel composites nanogels, based on poly(ethylene glycol) diacrylate and natural zeolite particles, that are able to act as materials with controlled drug delivery properties. Natural zeolite‒nanogels composite, with varying zeolite contents, were obtained by an inverse mini-emulsion technique and loaded with 5-fluorouracil, a widely used chemotherapeutic drug. Herein, the possibility of adjusting final properties by means of modifying the preparation conditions was investigated. The prepared composite nanogels are characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). In light of this tunable drug-loading capability, swelling behaviour, and cytotoxicity, these composite nanogels could be highly attractive as drug reservoirs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA