Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 258: 124418, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931059

RESUMEN

Ammonia detection is needed in several sectors including environmental monitoring, automobile industry, and in medical diagnosis. Conducting polymers, such as polyaniline (PANI), have been utilized to develop NH3 sensors operating at room temperature. However, the performance of these sensors in terms of sensitivity and selectivity need improvement. Functionalization of conducting PANI with metal nanocomposites have shown improved sensor performance. In this work, we report a highly sensitive copper-based nanocomposite for NH3 detection. The novelty lies in utilization of copper-ethylenediamine (Cu-en) nanocomposite functionalized over PANI for gas sensing. Resistance of the 20 wt% Cu-en with PANI increased 3.8 times upon exposure to 100 ppm of NH3. The nanocomposite sensor detected NH3 concentrations as low as 2 ppm. Further, the sensing mechanism was studied by in-situ IV characteristics and impedance spectroscopy during NH3 exposure. NH3 showed ionic interaction with PANI, and Cu2+. The strong affinity of Cu2+ for the lone pair of NH3 enhanced the sensor response from 0.78 to 3.8 for 100 ppm of NH3 at 20 °C. The sensor response was completely recovered after heating at 75 °C, which indicates reusability of the sensor. The sensor showed selectivity for NH3 over ethanol and H2S. The response was reasonably stable after bending the flexible sensor for 1000 times at a radius of 5 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA