Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 184: 613-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24051031

RESUMEN

Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity ((110m)Ag(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled ((110m)Ag(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.


Asunto(s)
Modelos Químicos , Nanopartículas/análisis , Dióxido de Silicio/análisis , Contaminantes Químicos del Agua/análisis , Coloides/análisis , Coloides/química , Fluorescencia , Modelos Teóricos , Nanopartículas/química , Concentración Osmolar , Porosidad , Dióxido de Silicio/química , Contaminantes Químicos del Agua/química
2.
Environ Pollut ; 184: 605-12, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23948261

RESUMEN

The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core ((110m)Ag) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled ((110m)Ag) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment.


Asunto(s)
Nanopartículas/análisis , Dióxido de Silicio/análisis , Contaminantes Químicos del Agua/análisis , Coloides/química , Monitoreo del Ambiente/métodos , Nanopartículas/química , Porosidad , Dióxido de Silicio/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química
3.
Environ Sci Process Impacts ; 15(8): 1590-600, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812006

RESUMEN

This study investigates the size and concentration effects on the transport of silica colloids in columns of sandy aquifer material. Colloid transport experiments were performed with specifically developed fluorescent labeled silica colloids in columns of a repacked natural porous medium under hydro-geochemical conditions representative of sandy aquifers. Breakthrough curves and vertical deposition profiles of colloids were measured for various colloid concentrations and sizes. The results showed that for a given colloid concentration injected, deposition increased when increasing the size of the colloids. For a given colloid size, retention was also shown to be highly concentration-dependent with a non-monotonous pattern presenting low and high concentration specificities. Deposition increases when increasing both size and injected concentration, until a threshold concentration is reached, above which retention decreases, thus increasing colloid mobility. Results observed above the threshold concentration agree with a classical blocking mechanism typical of a high concentration regime. Results observed at lower colloid concentrations were not modeled with a classical blocking model and a depth- and time-dependent model with a second order kinetic law was necessary to correctly fit the experimental data in the entire range of colloid concentrations with a single set of parameters for each colloidal size. The colloid deposition mechanisms occuring at low concentrations were investigated through a pore structure analysis carried out with Mercury Intrusion Porosimetry and image analysis. The determined pore size distribution permitted estimation of the maximal retention capacity of the natural sand as well as some low flow zones. Altogether, these results stress the key role of the pore space geometry of the sand in controlling silica colloids deposition under hydro-geochemical conditions typical of sandy aquifers. Our results also showed originally that colloid mobility in porous media is not only favored at high colloid concentrations, but also at very low concentrations, which are more likely to be observed in groundwater.


Asunto(s)
Coloides/química , Agua Subterránea/química , Modelos Teóricos , Nanopartículas/química , Dióxido de Silicio/química , Movimientos del Agua , Fluorescencia , Colorantes Fluorescentes/química , Porosidad , Rodaminas/química
4.
Environ Sci Process Impacts ; 15(2): 347-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25208699

RESUMEN

The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 µm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 µm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic processes, evolving from a matrix-dominant transfer of water and bacteria to a macropore-dominant transfer. This work points out the importance of using undisturbed natural soils to evaluate the mobility of bacteria in the field, since the evolving hydrodynamic properties of soils appeared to dominate most physicochemical factors.


Asunto(s)
Escherichia coli/fisiología , Microbiología del Suelo , Francia , Modelos Teóricos , Porosidad , Suelo/química
5.
Oecologia ; 161(1): 125-38, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19462183

RESUMEN

In soft-bottom sediments, consumers may influence ecosystem function more via engineering that alters abiotic resources than through trophic influences. Understanding the influence of bioturbation on physical, chemical, and biological processes of the water-sediment interface requires investigating top-down (consumer) and bottom-up (resource) forces. The objective of the present study was to determine how consumer bioturbation mode and sediment properties interact to dictate the hydrologic function of experimental filtration systems clogged by the deposition of fine sediments. Three fine-grained sediments characterized by different organic matter (OM) and pollutant content were used to assess the influence of resource type: sediment of urban origin highly loaded with OM and pollutants, river sediments rich in OM, and river sediments poor in OM content. The effects of consumer bioturbation (chironomid larvae vs. tubificid worms) on sediment reworking, changes in hydraulic head and hydraulic conductivity, and water fluxes through the water-sediment interface were measured. Invertebrate influences in reducing the clogging process depended not only on the mode of bioturbation (construction of biogenic structures, burrowing and feeding activities, etc.) but also on the interaction between the bioturbation process and the sediments of the clogging layer. We present a conceptual model that highlights the importance of sediment influences on bioturbation and argues for the integration of bottom-up influence on consumer engineering activities.


Asunto(s)
Conducta Animal/fisiología , Ecosistema , Sedimentos Geológicos/análisis , Invertebrados/fisiología , Modelos Biológicos , Ríos , Análisis de Varianza , Animales , Contaminantes Ambientales/análisis , Francia , Metales Pesados/análisis , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos/análisis , Movimientos del Agua
6.
J Contam Hydrol ; 100(1-2): 47-57, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18586351

RESUMEN

It is known that under unsaturated conditions, the transport of solutes can deviate from ideal advective-dispersive behaviour even for macroscopically homogeneous porous materials. Causes may include physical non-equilibrium, sorption kinetics, non-linear sorption, and the irregular distribution of sorption sites. We have performed laboratory experiments designed to identify the processes responsible for the non-ideality of radioactive Sr transport observed under unsaturated flow conditions in an Aeolian sandy deposit from the Chernobyl exclusion zone. Miscible displacement experiments were carried out at various water contents and corresponding flow rates in a laboratory model system. Results of our experiments have shown that breakthrough curves of a conservative tracer exhibit a higher degree of asymmetry when the water content decreases than at saturated water content and same Darcy velocity. It is possible that velocity variations caused by heterogeneities at the macroscopic scale are responsible for this situation. Another explanation is that molecular diffusion drives the solute mass transfer between mobile and immobile water regions, but the surface of contact between these water regions is small. At very low concentrations, representative of a radioactive Sr contamination of the pore water, sorption and physical disequilibrium dominate the radioactive Sr transport under unsaturated flow conditions. A sorption reaction is described by a cation exchange mechanism calibrated under fully saturated conditions. The sorption capacity, as well as the exchange coefficients are not affected by desaturation. The number of accessible exchange sites was calculated on the basis that the solid remained in contact with water and that the fraction of solid phase in contact with mobile water is numerically equal to the proportion of mobile water to total water content. That means that for this type of sandy soil, the nature of mineral phases is the same in advective and non-advective domains. So sorption reaction parameters can be estimated from more easily conducted saturated experiments, but hydrodynamic behaviour must be characterized by conservative tracer experiments under unsaturated flow conditions.


Asunto(s)
Accidente Nuclear de Chernóbil , Modelos Teóricos , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Estroncio/análisis , Contaminantes Radiactivos del Agua/análisis , Adsorción , Proyectos de Investigación , Dióxido de Silicio , Propiedades de Superficie , Ucrania , Movimientos del Agua
7.
J Contam Hydrol ; 76(1-2): 139-65, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15588576

RESUMEN

The effects of nonlinear sorption and competition with major cations present in the soil solution on radioactive strontium transport in an eolian sand were examined. Three laboratory techniques were used to identify and quantify the chemical and hydrodynamic processes involved in strontium transport: batch experiments, stirred flow-through reactor experiments and saturated laboratory columns. The major goal was to compare the results obtained under static and dynamic conditions and to describe in a deterministic manner the predominant processes involved in radioactive strontium transport in such systems. Experiments under dynamic conditions, namely flow-through reactor and column experiments, were in very good agreement even though the solid/liquid ratio was very different. The experimental data obtained from the flow-through reactor study pointed to a nonlinear, instantaneous and reversible sorption process. Miscible displacement experiments were conducted to demonstrate the competition between stable and radioactive strontium and to quantify its effect on the 85Sr retardation factor. The results were modeled using the PHREEQC computer code. A suitable cation-exchange model was used to describe the solute/soil reaction. The model successfully described the results of the entire set of miscible displacement experiments using the same set of parameter values for the reaction calculations. The column study revealed that the stable Sr aqueous concentration was the most sensitive variable of the model, and that the initial state of the sand/solution system had also to be controlled to explain and describe the measured retardation factor of radioactive strontium. From these observations, propositions can be made to explain the discrepancies observed between some data obtained from static (batches) and dynamic (reactor and column) experiments. Desorbed antecedent species (stable Sr) are removed from the column or reactor in the flow system but continue to compete for sorption sites in the batch system. Batch experiments are simple and fast, and provide a very useful means of multiplying data. However, interpretation becomes difficult when different species compete for sorption sites in the soil/solution system. A combination of batches, flow-through reactor and column experiments, coupled with hydrogeochemical modeling, would seem to offer a very powerful tool for identifying and quantifying the predominant processes on a cubic decimeter scale (dm3) and for providing a range of radioactive strontium retardation factor as a function of the geochemistry of the soil/solution system.


Asunto(s)
Accidente Nuclear de Chernóbil , Modelos Teóricos , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Adsorción , Dióxido de Silicio , Radioisótopos de Estroncio/análisis , Ucrania , Movimientos del Agua
8.
J Contam Hydrol ; 70(3-4): 205-24, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15134875

RESUMEN

Nowadays, it is necessary to understand and identify the reactions governing the fate of heavy metals introduced into the environment with low complexing organic compounds, particularly when they are transferred through soils in urban areas. In this work the concomitant influence of pH and acetate on the fate of zinc on siliceous sand was studied in batch and non-saturated column experiments. Total zinc concentrations varied between 2 and 20 mg/l, and total acetate concentrations were fixed at 22, 72, 132, and 223 mM to obtain solution pHs of 4, 5, 6 and 7, respectively. Natural sand (diameter, 0.3-2 mm), mainly constituted of silica, was used. In batch adsorption experiments, zinc adsorption is insignificant at pH 4, low and linear at pH 5, and increasingly nonlinear, of the Langmuir type, at pH 6 and 7 indicating near-saturation conditions of surface sites at these high pH values. In column experiments, Zn retardation increases and the maximum outlet concentration of Zn decreases with rising pH and acetate concentrations. Previous column tracer experiments revealed the occurrence of regionalized water transport in the column. Modeling these data was based on a non-electrostatic approach. Batch and column data modeling was based on the PHREEQC code that allows concomitant resolution of chemical speciation and regionalized water transport. The speciation calculation indicates that the ZnAcetate+ species is the dominant Zn species in the solutions used. Batch experimental curves are correctly modeled assuming the formation of the three surface species triple bond SiOZn+, triple bond SiOH-Zn Acetate+ and triple bond SiO-Zn(Acetate)2-. The column data could be adequately modeled assuming a two-region water transport and the formation of the same three species with the same thermodynamic constants determined in the batch experiments. The hypothesis of the modeling leads to a slight overestimation of the quantities of zinc eluted (10%) at pH 6 and 7, mostly in the desorption phase. These results show that the methodology used facilitates the correct modeling of both batch and transport experiments and formulation of the hypothesis on the interactions between the low reactive sand and a complex solution.


Asunto(s)
Acetatos/química , Modelos Teóricos , Dióxido de Silicio/química , Zinc/química , Adsorción , Contaminantes Ambientales/análisis , Diseño de Equipo , Concentración de Iones de Hidrógeno , Ligandos , Propiedades de Superficie , Factores de Tiempo , Zinc/análisis , Acetato de Zinc/análisis , Acetato de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA