Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hepatol Commun ; 7(4)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972378

RESUMEN

Critically ill patients presenting with acute on chronic liver failure (ACLF) represent a particularly vulnerable population due to various considerations surrounding the syndrome definition, lack of robust prospective evaluation of outcomes, and allocation of resources such as organs for transplantation. Ninety-day mortality related to ACLF is high and patients who do leave the hospital are frequently readmitted. Artificial intelligence (AI), which encompasses various classical and modern machine learning techniques, natural language processing, and other methods of predictive, prognostic, probabilistic, and simulation modeling, has emerged as an effective tool in various areas of healthcare. These methods are now being leveraged to potentially minimize physician and provider cognitive load and impact both short-term and long-term patient outcomes. However, the enthusiasm is tempered by ethical considerations and a current lack of proven benefits. In addition to prognostic applications, AI models can likely help improve the understanding of various mechanisms of morbidity and mortality in ACLF. Their overall impact on patient-centered outcomes and countless other aspects of patient care remains unclear. In this review, we discuss various AI approaches being utilized in healthcare and discuss the recent and expected future impact of AI on patients with ACLF through prognostic modeling and AI-based approaches.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Humanos , Insuficiencia Hepática Crónica Agudizada/diagnóstico , Insuficiencia Hepática Crónica Agudizada/terapia , Inteligencia Artificial , Pronóstico , Hospitales , Curva ROC
2.
Front Med (Lausanne) ; 10: 1336897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274456

RESUMEN

Background: Digital twins are computerized patient replicas that allow clinical interventions testing in silico to minimize preventable patient harm. Our group has developed a novel application software utilizing a digital twin patient model based on electronic health record (EHR) variables to simulate clinical trajectories during the initial 6 h of critical illness. This study aimed to assess the usability, workload, and acceptance of the digital twin application as an educational tool in critical care. Methods: A mixed methods study was conducted during seven user testing sessions of the digital twin application with thirty-five first-year internal medicine residents. Qualitative data were collected using a think-aloud and semi-structured interview format, while quantitative measurements included the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and a short survey. Results: Median SUS scores and NASA-TLX were 70 (IQR 62.5-82.5) and 29.2 (IQR 22.5-34.2), consistent with good software usability and low to moderate workload, respectively. Residents expressed interest in using the digital twin application for ICU rotations and identified five themes for software improvement: clinical fidelity, interface organization, learning experience, serious gaming, and implementation strategies. Conclusion: A digital twin application based on EHR clinical variables showed good usability and high acceptance for critical care education.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA