RESUMEN
This study aimed to evaluate the in silico and in vitro inhibitory effect of the combined use of galantamine (GAL) and donepezil (DON) against acetylcholinesterase and butyrylcholinesterase (BuChE) enzymes. In silico and in vitro cholinesterase analysis were carried out for GAL and DON alone and combined. Molecular modeling studies were carried out (docking analysis, molecular dynamics simulation, and quantum theory of atoms in molecules). Cholinesterase's inhibitory activities by modified Ellman's method and the drug combination effect using the Chou-Talalay method were assayed. GAL/DON combination showed the co-occupancy of the ligands in both enzymes through in silico studies. Regarding in vitro BuChE inhibition analyses, three of five combinations showed an interaction between GAL and DON at the threshold of additive affect (0.9 < CI < 1.1), with a tendency toward a synergistic effect for higher concentrations. This is the first report showing the efficacy of the GAL/DON combinations inhibiting BuChE, showing the importance of analyzing the behavior of different ligands when co-occupancy into the active site is possible. These combinations might be a possible therapy to improved efficacy, reduced doses, minor side effects, and high levels of the neurotransmitter in the synaptic space for Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Galantamina , Humanos , Galantamina/farmacología , Butirilcolinesterasa/metabolismo , Donepezilo/farmacología , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico , Simulación del Acoplamiento MolecularRESUMEN
In this work, we report a derivative of N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide as a new inhibitor for adenylyl cyclase of Giardia lamblia which was obtained from a study using structural data of the nucleotidyl cyclase 1 (gNC1) of this parasite. For such a study, we developed a model for this specific enzyme by using homology techniques, which is the first model reported for gNC1 of G. lamblia. Our studies show that the new inhibitor has a competitive mechanism of action against this enzyme. 2-Hydroxyestradiol was used as the reference compound for comparative studies. Results in this work are important from two points of view. on the one hand, an experimentally corroborated model for gNC1 of G. lamblia obtained by molecular modelling is presented; on the other hand, the new inhibitor obtained is an undoubtedly excellent starting structure for the development of new metabolic inhibitors for G. lamblia.
Asunto(s)
Adenilil Ciclasas/metabolismo , Inhibidores Enzimáticos/farmacología , Giardia lamblia/enzimología , Adenilil Ciclasas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-ActividadRESUMEN
The synthesis, in vitro evaluation and conformational study of several small-size peptides acting as antibacterial agents are reported. Among the compounds evaluated, the peptides Arg-Gln-Ile-Lys-Ile-Trp-Arg-Arg-Met-Lys-Trp-Lys-Lys-NH2 , Arg-Gln-Ile-Lys-Ile-Arg-Arg-Met-Lys-Trp-Arg-NH2 , and Arg-Gln-Ile-Trp-Trp-Trp-Trp-Gln-Arg-NH2 exhibited significant antibacterial activity. These were found to be very active antibacterial compounds, considering their small molecular size. In order to better understand the antibacterial activity obtained for these peptides, an exhaustive conformational analysis was performed, using both theoretical calculations and experimental measurements. Molecular dynamics simulations using two different media (water and trifluoroethanol/water) were employed. The results of these theoretical calculations were corroborated by experimental circular dichroism measurements. A brief discussion on the possible mechanism of action of these peptides at molecular level is also presented. Some of the peptides reported here constitute very interesting structures to be used as starting compounds for the design of new small-size peptides possessing antibacterial activity.
Asunto(s)
Antibacterianos/química , Proteínas Portadoras/química , Oligopéptidos/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Péptidos de Penetración Celular , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Simulación de Dinámica Molecular , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Conformación Proteica , Salmonella/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacosRESUMEN
The synthesis, in vitro evaluation and conformational study of penetratin and structurally related derivatives acting as antibacterial agents are reported. Among the compounds evaluated here, two methionine sulphoxide derivatives (RQIKIWFQNRRM[O]KWKK-NH2 and RQIKIFFQNRRM[O]KFKK-NH2 ) exhibited the strongest antibacterial effect in this series. In order to better understand the antimicrobial activity obtained for these peptides, we performed an exhaustive conformational analysis using different approaches. Molecular dynamics simulations were performed using two different media (water and trifluoroethanol/water). The results of these theoretical calculations were corroborated using experimental CD measurements. The electronic study for these peptides was carried out using molecular electrostatic potentials obtained from RHF/6-31G(d) calculations. In addition, the non-apeptide RQIRRWWQR-NH2 showed strong inhibitory action against the Gram-negative and Gram-positive bacteria tested in this study.
Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Proteínas Portadoras/química , Proteínas Portadoras/farmacología , Secuencia de Aminoácidos , Infecciones Bacterianas/tratamiento farmacológico , Péptidos de Penetración Celular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación ProteicaRESUMEN
The synthesis, in vitro evaluation, and conformational study of penetratin analogues acting as antifungal agents are reported. Different peptides structurally related with penetratin were evaluated. Analogues of penetratin rich in Arg, Lys and Trp amino acids were tested. In addition, HFRWRQIKIWFQNRRM[O]KWKK-NH(2), a synthetic 20 amino acid peptide was also evaluated. These penetratin analogues displayed antifungal activity against human pathogenic strains including Candida albicans and Cryptococcus neoformans. In contrast, Tat peptide, a well-known cell penetrating peptide, did not show a significant antifungal activity against fungus tested here. We also performed a conformational study by means experimental and theoretical approaches (CD spectroscopic measurements and MD simulations). The electronic structure analysis was carried out from Molecular Electrostatic Potentials (MEP) obtained by using RHF/6-31G ab initio calculations. Our experimental and theoretical results permitted us to identify a topographical template which may provide a guide for the design of new peptides with antifungal effects.
Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Proteínas Portadoras/química , Proteínas Portadoras/farmacología , Hongos/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos de Penetración Celular , Dicroismo Circular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Método de Montecarlo , Conformación Proteica , Electricidad EstáticaRESUMEN
The synthesis, in vitro evaluation, and conformational study of a new series of small-size peptides acting as antifungal agents are reported. In a first step of our study we performed a conformational analysis using Molecular Mechanics calculations. The electronic study was carried out using Molecular electrostatic potentials (MEPs) obtained from RHF/6-31G calculations. On the basis of the theoretical predictions three small-size peptides, RQWKKWWQWRR-NH(2), RQIRRWWQWRR-NH(2), and RQIRRWWQW-NH(2) were synthesized and tested. These peptides displayed a significant antifungal activity against human pathogenic strains including Candida albicans and Cryptococcus neoformans. Our experimental and theoretical results allow the identification of a topographical template which can serve as a guide for the design of new compounds with antifungal properties for potential therapeutic applications against these pathogenic fungi.