Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 361: 124818, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187059

RESUMEN

The research on the impact of plastic pollution on biodiversity has primarily focused on aquatic ecosystems, especially marine ones. Therefore, it is vital to assess how plastic pollution affects other environments and organisms, including terrestrial invertebrates. These organisms are widely recognized for their susceptibility to environmental changes and pollution. The objectives of this study were i) to investigate the potential influence (positive or negative) of macroplastic debris (MaP) on invertebrates inhabiting riverine sandy environments, ii) the potential occurrence of the microplastic (MP) adherence phenomenon on the invertebrate's body by entanglement on the body's setae or electrostatic effect (i.e., bioadhesion), and iii) the effects of removal of debris on the colonized diversity. By performing a mesocosm experiment, emulating a "small-scale dump" (also called micro-waste sites), we found that terrestrial invertebrates show a preference for colonizing areas rich in MaP, resulting in higher species richness in these areas (39 taxa in areas containing plastic debris vs. 21 taxa in areas free of plastics). This preference is likely due to the provision of shade, protection, and distinct micro-habitats offered by MaP. Regarding MP, we observed a significant number of invertebrates with MPs attached to their bodies (4.3 ± 0.8 MPs attached per individual), mainly wolf spiders (Lycosidae) and ground beetles (Carabidae), suggesting potential negative ecological implications that are discussed herein.

2.
Sci Total Environ ; 897: 165406, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423280

RESUMEN

Rivers are the main pathway for microplastics (MP) transport toward the ocean. However, the understanding of the processes involved in the deposition and mobilization of MP in rivers, specifically in sediment side bars (SB), remains very limited. The objectives of this study were: (i) to examine the effect of hydrometric fluctuations and wind intensity on the distribution of microplastics (MP < 5 mm) in the SB of large river (the Paraná River), (ii) to determine the characteristics of MP to infer their origin and fate, and (iii) to discuss potential similarities or differences between MP suspended in the water column and MP found in sediment. The SB and water column were sampled during the autumn, winter, and spring of 2018, and the summer of 2019 at different river discharges and wind intensities. >90 % of the MP items found were fiber of polyethylene terephthalate (PET; FT-IR analysis), the most common MP color was blue, and most were in the 0.5-2 mm size range. The concentration/composition of MP varied according to the river discharge and wind intensity. During the falling limb of the hydrograph when discharge is decreasing and sediments are exposed for short periods (13-30 days), MP particles transported by the flow were deposited on temporarily exposed SB, accumulating there in high densities (309-373 items/kg). However, during the drought, when sediments remained exposed for a long time (259 days), MP were mobilized and transported by the wind. During this period (no influence of the flow), MP densities significantly decreased on SB (39-47 items/kg). In conclusion, both hydrological fluctuations and wind intensity played a significant role in MP distribution in SB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA