RESUMEN
Piscirickettsia salmonis is the causative bacterial agent of piscirickettsiosis, a systemic fish disease that significantly impacts the Chilean salmon industry. This bacterium possesses a type IV secretion system (T4SS), several proteins of the type III secretion system (T3SS), and a single heat shock protein 60 (Hsp60/GroEL). It has been suggested that due to its high antigenicity, the P. salmonis Hsp60 could be surface-exposed, translocated across the membrane, and (or) secreted into the extracellular matrix. This study tests the hypothesis that P. salmonis Hsp60 could be located on the bacterial surface. Immunogold electron microscopy and proteomic analyses suggested that although P. salmonis Hsp60 was predominantly associated with the bacterial cell cytoplasm, Hsp60-positive spots also exist on the bacterial cell envelope. IgY antibodies against P. salmonis Hsp60 protected SHK-1 cells against infection. Several bioinformatics approaches were used to assess Hsp60 translocation by the T4SS, T3SS, and T6SS, with negative results. These data support the hypothesis that small amounts of Hsp60 must reach the bacterial cell surface in a manner probably not mediated by currently characterized secretion systems, and that they remain biologically active during P. salmonis infection, possibly mediating adherence and (or) invasion.
RESUMEN
Piscirickettsia salmonis is an intracellular γ-proteobacteria and the etiological agent of piscirickettsiosis, which causes massive economic losses in the Chilean salmon industry. The type IV pili (T4P) play an important role in adherence to host cell surfaces and bacterial pathogenicity. T4P contains a variable number of components, as predicted in P. salmonis genomes. However, no studies have determined if P. salmonis possesses T4P. The aims of this investigation were to identify T4P components in the P. salmonis type strain LF-89T, evaluate respective transcript expressions, and analyze the main putative T4P proteins using bioinformatics and proteomic approaches. Two main clusters of P. salmonis T4P genes were found. Expression of the pilA gene was upregulated at 4 h post-infection (hpi), while pilQ was upregulated 4 days post-infection. At 16 hpi, pilB and pilD were strongly upregulated. The PilA amino acid sequence analysis showed a conserved N-terminal domain and sequence motifs critical for T4P biosynthesis. MudPIT analysis revealed PilA in the P. salmonis LF-89T proteome, and TEM showed pili-like filamentous structures on the P. salmonis surface. These results strongly suggest the presence of a T4P-like structure in P. salmonis.
Asunto(s)
Fimbrias Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Piscirickettsia/metabolismo , Infecciones por Piscirickettsiaceae/veterinaria , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/genética , Genómica , Piscirickettsia/química , Piscirickettsia/genética , Piscirickettsia/crecimiento & desarrollo , Infecciones por Piscirickettsiaceae/microbiología , Proteómica , Salmo salar/microbiología , Alineación de SecuenciaRESUMEN
Piscirickettsia salmonis is one of the major fish pathogens affecting Chilean aquaculture. This Gram-negative bacterium is highly infectious and is the etiological agent of Piscirickettsiosis. Little is currently known about how the virulence factors expressed by P. salmonis are delivered to host cells. However, it is known that several Gram-negative microorganisms constitutively release outer membrane vesicles (OMVs), which have been implicated in the delivery of virulence factors to host cells. In this study, OMVs production by P. salmonis was observed during infection in CHSE-214 cells and during normal growth in liquid media. The OMVs were spherical vesicles ranging in size between 25 and 145 nm. SDS-PAGE analysis demonstrated that the protein profile of the OMVs was similar to the outer membrane protein profile of P. salmonis. Importantly, the bacterial chaperonin Hsp60 was found in the OMVs of P. salmonis by Western-blot and LC-MS/MS analyses. Finally, in vitro infection assays showed that purified OMVs generated a cytopathic effect on CHSE-214 cells, suggesting a role in pathogenesis. Therefore, OMVs might be an important vehicle for delivering effector molecules to host cells during P. salmonis infection.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Piscirickettsia/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Línea Celular , Supervivencia Celular , Chaperonina 60/química , Técnicas In Vitro , Microscopía Electrónica de Transmisión , Piscirickettsia/genética , Piscirickettsia/patogenicidad , Proteoma/genética , Factores de Virulencia/genéticaRESUMEN
A comparative study of 109 Aeromonas clinical isolates belonging to the 3 species most frequently isolated from patients with diarrhea in Mexico and Spain was performed to investigate the distribution of 3 prominent toxin genes and the gene encoding flagellin of lateral flagella; 4 well-established virulence factors in the genus Aeromonas. The aerolysin-hemolysin toxin genes were the most prevalent, being present in 89% of the total isolates. The ast toxin gene was conspicuously absent from the Aeromonas caviae and Aeromonas veronii groups but was present in 91% of the Aeromonas hydrophila isolates. Both the alt toxin gene and the lafA flagellin gene also had a low incidence in A. caviae and A. veronii. Differences in the prevalence of alt and lafA were observed between isolates from Mexico and Spain, confirming genus heterogeneity according to geographic location. Carriage of multiple toxin genes was primarily restricted to A. hydrophila isolates, suggesting that A. caviae and A. veronii isolates circulating in Mexico and Spain possess a limited array of virulence genes. Enterobacterial repetitive intergenetic consensus - polymerase chain reaction showed that the Aeromonas populations sampled lack dominant clones and were genetically heterogeneous, with A. caviae being the most diverse species. Further surveys of virulence determinants in genetically heterogeneous populations of Aeromonas isolates circulating worldwide are required to enhance the understanding of their capacity to cause disease.