RESUMEN
Marine microalgae produce extracellular metabolites such as exopolysaccharides (EPS) with potentially beneficial biological applications to human health, especially antioxidant and antitumor properties, which can be increased with changes in crop trophic conditions. This study aimed to develop the autotrophic and heterotrophic culture of Tetraselmis suecica (Kylin) Butcher in order to increase EPS production and to characterize its antioxidant activity and cytotoxic effects on tumor cells. The adaptation of autotrophic to heterotrophic culture was carried out by progressively reducing the photoperiod and adding glucose. EPS extraction and purification were performed. EPS were characterized by Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. The antioxidant capacity of EPS was analyzed by the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method, and the antitumor capacity was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, showing high activity on human leukemia, breast and lung cancer cell lines. Although total EPS showed no cytotoxicity, acidic EPS showed cytotoxicity over the gingival fibroblasts cell line. Heterotrophic culture has advantages over autotrophic, such as increasing EPS yield, higher antioxidant capacity of the EPS and, to the best of our knowledge, this is the first probe that T. suecica EPS have cytotoxic effects on tumor cells; therefore, they could offer greater advantages as possible natural nutraceuticals for the pharmaceutical industry.
Asunto(s)
Antioxidantes/farmacología , Microalgas/metabolismo , Polisacáridos/farmacología , Adaptación Fisiológica , Antineoplásicos , Procesos Autotróficos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Procesos Heterotróficos , Humanos , Microalgas/química , Polisacáridos/químicaRESUMEN
From generalized phase-shifting equations, we propose a simple linear system analysis for algorithms with equally and nonequally spaced phase shifts. The presence of a finite number of harmonic components in the fringes of the intensity patterns is taken into account to obtain algorithms insensitive to these harmonics. The insensitivity to detuning for the fundamental frequency is also considered as part of the description of this study. Linear systems are employed to recover the desired insensitivity properties that can compensate linear phase shift errors. The analysis of the wrapped phase equation is carried out in the Fourier frequency domain.
RESUMEN
We present a method for reducing the phase flicker originated by the pulsed modulation of a Liquid Crystal on Silicon (LCoS) Spatial Light Modulator (SLM). It consists in reducing the temperature of the LCoS in a controlled way, in order to increase the viscosity of the liquid crystal. By doing this, we increase the time response of the liquid crystal, and thus reduce the amplitude of phase fluctuations. We evaluate the efficacy of this method quantifying the temporal evolution of phase shift using an experiment that is insensitive to optical polarization fluctuations. Additionally, we determine the effect of the temperature reduction on the effective phase modulation capability of the LCoS. We demonstrate that a reduction of up to 80% of the flicker initial value can be achieved when the LCoS is brought to -8 °C.
RESUMEN
In this manuscript, some interesting properties for generalized or nonuniform phase-shifting algorithms are shown in the Fourier frequency space. A procedure to find algorithms with equal amplitudes for their sampling function transforms is described. We also consider in this procedure the finding of algorithms that are orthogonal for all possible values in the frequency space. This last kind of algorithms should closely satisfy the first order detuning insensitive condition. The procedure consists of the minimization of functionals associated with the desired insensitivity conditions.