RESUMEN
In this work, we employed a novel microwave-assisted synthesis method to produce nitrogen and boron co-doped carbon dots (B-N co-doped CDs). To achieve optimal synthesis, we conducted a comprehensive parameter modulation approach, combining various synthesis temperatures, times, and precursor concentrations, while keeping the power constant at 150 W and pH 5. Using maximum fluorescence emission as our response variable, the best conditions were identified as 120 °C, 3 min, and a precursor concentration of 1 mg/mL. Characterization using field emission scanning electron microscopy revealed these CDs to have a spherical morphology with an average size of 10.9 ± 3.38 nm. Further high-resolution transmission electron microscopy showed an interplanar distance of 0.23 nm, which is in line with prior findings of CDs that present a 0.21 nm distance corresponding to the (100) plane of graphite. Optical properties were ascertained through UV-vis absorption, identifying distinct π-π* and n-π* transitions. Fluorescence spectroscopy highlighted an emission peak at 375 nm when excited at 295 nm, achieving a quantum yield of 56.7%. Fourier-transform infrared spectroscopy and Raman spectroscopy analyses confirmed the boronic acid and amine groups' presence, underscoring the graphitic nature of the core and the co-doping of boron and nitrogen. These empirical observations were compared with theoretical investigations through simulated Raman spectra, proposing a potential structure for the CDs. X-ray photoelectron spectroscopy further endorsed the co-doping of nitrogen and boron, along with the detection of the specified functional groups. All these characteristics could lend this nanomaterial to different types of applications such as fluorescent probes for a broad range of analytes and for fluorescent cell imaging.
RESUMEN
The use of enzyme-based biosensors for the detection and quantification of analytes of interest such as contaminants of emerging concern, including over-the-counter medication, provides an attractive alternative compared to more established techniques. However, their direct application to real environmental matrices is still under investigation due to the various drawbacks in their implementation. Here, we report the development of bioelectrodes using laccase enzymes immobilized onto carbon paper electrodes modified with nanostructured molybdenum disulfide (MoS2). The laccase enzymes were two isoforms (LacI and LacII) produced and purified from the fungus Pycnoporus sanguineus CS43 that is native to Mexico. A commercial purified enzyme from the fungus Trametes versicolor (TvL) was also evaluated to compare their performance. The developed bioelectrodes were used in the biosensing of acetaminophen, a drug widely used to relieve fever and pain, and of which there is recent concern about its effect on the environment after its final disposal. The use of MoS2 as a transducer modifier was evaluated, and it was found that the best detection was achieved using a concentration of 1 mg/mL. Moreover, it was found that the laccase with the best biosensing efficiency was LacII, which achieved an LOD of 0.2 µM and a sensitivity of 0.108 µA/µM cm2 in the buffer matrix. Moreover, the performance of the bioelectrodes in a composite groundwater sample from Northeast Mexico was analyzed, achieving an LOD of 0.5 µM and a sensitivity of 0.015 µA/µM cm2. The LOD values found are among the lowest reported for biosensors based on the use of oxidoreductase enzymes, while the sensitivity is the highest currently reported.
Asunto(s)
Acetaminofén , Agua Subterránea , Lacasa , Molibdeno , Trametes , Electrodos , CarbonoRESUMEN
The surface modification of materials obtained from natural polymers, such as silk fibroin with metal nanoparticles that exhibit intrinsic electrical characteristics, allows the obtaining of biocomposite materials capable of favoring the propagation and conduction of electrical impulses, acting as communicating structures in electrically isolated areas. On that basis, this investigation determined the electrochemical and electroconductive behavior through electrochemical impedance spectroscopy of a silk fibroin electrospun membrane from silk fibrous waste functionalized with gold or silver nanoparticles synthetized by green chemical reduction methodologies. Based on the results obtained, we found that silk fibroin from silk fibrous waste (SFw) favored the formation of gold (AuNPs-SFw) and silver (AgNPs-SFw) nanoparticles, acting as a reducing agent and surfactant, forming a micellar structure around the individual nanoparticle. Moreover, different electrospinning conditions influenced the morphological properties of the fibers, in the presence or absence of beads and the amount of sample collected. Furthermore, treated SFw electrospun membranes, functionalized with AuNPs-SFw or AgNPS-SFw, allowed the conduction of electrical stimuli, acting as stimulators and modulators of electric current.
RESUMEN
Groundwater is one of the primary sources of water for both drinking and industrial use in northeastern Mexican territory, around 46% of the total, due to the lack of precipitation during the year and solar radiation index. The presence of arsenic in brackish soil and groundwater is a severe health issue, specifically in semi-arid and arid regions in the north of Mexico. Additionally, it represents the only source of drinking water in communities far from big cities, mainly due to the absence of hydric infrastructure. This work presents a new approach to treating polluted water with arsenic. The system based on activating jute fiber with nanoparticles of zero-valent iron immobilized over graphene oxide will allow nZVI particles to preserve their unique qualities for water sanitization. A dynamic flow test was designed to determine the effectivity of activated jute fibers as a water sanitation system. The results showed a reduction in the total arsenic content from 350 ppb to 34 ppb with a filtrate flow of 20 mL/min. The above represents 90% adsorption by the activated fiber. The analyzed sample corresponds to contaminated groundwater taken from Coahuila, Mexico. This sanitation system could be applied to low-income populations lacking robust infrastructure, such arsenic treatment plants.
RESUMEN
Tissue engineering has focused on the development of biomaterials that emulate the native extracellular matrix. Therefore, the purpose of this research was oriented to the development of nanofibrillar bilayer membranes composed of polycaprolactone with low and medium molecular weight chitosan, evaluating their physicochemical and biological properties. Two-bilayer membranes were developed by an electrospinning technique considering the effect of chitosan molecular weight and parameter changes in the technique. Subsequently, the membranes were evaluated by scanning electron microscopy, Fourier transform spectroscopy, stress tests, permeability, contact angle, hemolysis evaluation, and an MTT test. From the results, it was found that changes in the electrospinning parameters and the molecular weight of chitosan influence the formation, fiber orientation, and nanoarchitecture of the membranes. Likewise, it was evidenced that a higher molecular weight of chitosan in the bilayer membranes increases the stiffness and favors polar anchor points. This increased Young's modulus, wettability, and permeability, which, in turn, influenced the reduction in the percentage of cell viability and hemolysis. It is concluded that the development of biomimetic bilayer nanofibrillar membranes modulate the physicochemical properties and improve the hemolytic behavior so they can be used as a hemocompatible biomaterial.
RESUMEN
The influence of the lateral size and the content of graphene oxide (GO) flakes in specific oxygenate functional groups on the anti-biofouling properties and performance of thin-film composite membrane (TFC) was studied. Three different multidimensional GO samples were prepared with small (500-1200 nm), medium (1200-2300 nm), and large (2300-3600 nm) size distribution, and with different degrees of oxidation (GO3 > GO2 > GO1), varying the concentration of the hydrogen peroxide amount during GO synthesis. GO1 sheets' length have a heterogeneous size distribution containing all size groups, whilst GO2 is contained in a medium-size group, and GO3 is totally contained within a small-size group. Moreover, GO oxygenate groups were controlled. GO2 and GO3 have hydroxyl and epoxy groups at the basal plane of their sheets. Meanwhile, GO1 presented only hydroxyl groups. GO sheets were incorporated into the polyamide (PA) layer of the TFC membrane during the interfacial polymerization reaction. The incorporation of GO1 produced a modified membrane with excellent bactericidal properties and anti-adhesion capacity, as well as superior desalination performance with high water flow (133% as compared with the unmodified membrane). For GO2 and GO3, despite the significant anti-biofouling effect, a detrimental impact on desalination performance was observed. The high content of large sheets in GO2 and small sheet stacking in GO3 produced an unfavorable impact on the water flow. Therefore, the synergistic effect due to the presence of large- and small-sized GO sheets and high content of OH-functional groups (GO1) made it possible to balance the performance of the membrane.
RESUMEN
Intrinsic radiosensitivity is a biological parameter known to influence the response to radiation therapy in cancer treatment. In this study, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) were successfully used in conjunction with principal component analysis (PCA) to discriminate between radioresistant (LY-R) and radiosensitive (LY-S) murine lymphoma sublines (L5178Y). PCA results for normal Raman analysis showed a differentiation between the radioresistant and radiosensitive cell lines based on their specific spectral fingerprint. In the case of SERS with gold nanoparticles (AuNPs), greater spectral enhancements were observed in the radioresistant subline in comparison to its radiosensitive counterpart, suggesting that each subline displays different interaction with AuNPs. Our results indicate that spectroscopic and chemometric techniques could be used as complementary tools for the prediction of intrinsic radiosensitivity of lymphoma samples.
RESUMEN
Spruce wood (picea abis) has been widely used as structural element, from buildings to musical instruments, due to its outstanding mechanical performances. The main stem transverse section exhibits growth rings formed by periodic fringes patterns, which are constituted by lamellae-tracheid arrangements. In order to improve the understanding of each wood microstructure role, the morphology and crystallinity of earlywood and latewood fibers were examined mainly using scanning electron microscopy, atomic force microscopy, and X-ray difracction. Moreover, measurements of effective elastic modulus and hardness were obtained by nanoindentation tests using a Berkovich indenter in order to confirmed increase in compactness of the wood microstructures. The results indicate that variations in mechanical properties values can be associated with well defined microstructural performances for each characteristic fiber type, where those that belong to latewood fiber showed the most improved behaviors. A finite element simulation of a lamellar-tracheids arrangement was carried out in order to clarify its stiffness and elastic deformation capabilities, as relevant factors contributing to the successful adaptation of picea abis colonies to harsh conditions habitats as well as for its construction applications of string instruments.
Asunto(s)
Microscopía de Fuerza Atómica , Picea/ultraestructura , Madera/ultraestructura , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Microscopía Electrónica de Rastreo , Difracción de Rayos XRESUMEN
INTRODUCTION: Actinomycosis is a chronic bacterial infection caused by Actinomyces, Gram-positive anaerobic bacteria. Its symptomatology imitates some malignant pelvic tumours, tuberculosis, or nocardiosis, causing abscesses and fistulas. Actinomycoses are opportunistic infections and require normal mucous barriers to be altered. No epidemiological studies have been conducted to determine prevalence or incidence of such infections. OBJECTIVE: To analyse the clinical cases of pelvic actinomycosis reported worldwide, to update the information about the disease. METHODS: A systematic review of worldwide pelvic actinomycosis cases between 1980 and 2014 was performed, utilising the PubMed, Scopus, and Google Scholar databases. The following information was analysed: year, country, type of study, number of cases, use of intrauterine device (IUD), final and initial diagnosis, and method of diagnosis. RESULTS: 63 articles met the search criteria, of which 55 reported clinical cases and 8 reported cross-sectional studies. CONCLUSIONS: Pelvic actinomycosis is confusing to diagnose and should be considered in the differential diagnosis of pelvic chronic inflammatory lesions. It is commonly diagnosed through a histological report, obtained after a surgery subsequent to an erroneous initial diagnosis. A bacterial culture in anaerobic medium could be useful for the diagnosis but requires a controlled technique and should be performed using specialised equipment.
RESUMEN
PURPOSE: Under certain circumstances, Actinomyces behaves as an opportunistic microorganism and can cause actinomycosis, a chronic and inflammatory granulomatous infection. The purpose of this project was to detect the presence of Actinomyces in cervical exudates from women with cervical intraepithelial neoplasia (CIN) and women with cervical cancer. METHODOLOGY: Cervical samples from 92 women were divided into three groups: CIN, cervical cancer and healthy women. Metagenomic DNA extraction was performed following the Qiagen QIAamp Mini Kit protocol. A specific fragment (675 bp) was amplified by PCR in order to detect the presence of Actinomycetales. Samples in which Actinomycetales was detected were subjected to separate amplification reactions with primer pairs for A. israelii, A. viscosus, A. meyeri and A. odontolyticus. Amplified products were observed by 2â% agarose gel electrophoresis. RESULTS: Actinomyces were found in 10â% of women with CIN, 36.6â% of women with cervical cancer and 9â% of healthy women. The species identified in this study were A. meyeri in 14/92 samples (15.2â%), A. viscosus in 10/92 samples (10.8â%), A. odontolyticus in 4/92 samples (4.3â%) and A. israelii in 6/92 samples (6.5â%). CONCLUSION: Patients with cervical cancer had a higher prevalence of the presence of Actinomyces compared to the CIN and control groups. This is the first study in which a deliberate search of this genus has been performed in women with cervical pathologies. The use of specific primers for each species facilitated their detection in comparison with traditional isolation methods. More information is necessary to understand the molecular mechanisms involved in the complex role that bacterial communities may play in the development of cancer (and vice versa).
Asunto(s)
Actinomyces/aislamiento & purificación , Cuello del Útero/microbiología , Displasia del Cuello del Útero/microbiología , Neoplasias del Cuello Uterino/microbiología , Actinomyces/clasificación , Actinomyces/genética , Actinomicosis/microbiología , Adulto , Cuello del Útero/patología , Estudios Transversales , Femenino , Genotipo , Voluntarios Sanos , Humanos , Metagenómica , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Prevalencia , Adulto JovenRESUMEN
Surface modification in nanostructured mesoporous silica particles (MSNs) can significantly increase the uptake in myocardial cells. Herein, MSNs particles were synthesized and chemically functionalized to further assess their biocompatibility in rat myocardial cell line H9c2. The surface modification resulted in particles with an enhanced cellular internallization (3-fold increase) with respect to pristine particles. Apoptosis events were not evident at all, while necrosis incidence was significant only at a higher doses (>500µg/mL). In particular, the percentage of necrotic cells decrease in a statistically significant manner for the functionalized particles at lower doses than 100µg/mL. This study concludes that the proposed surface functionalization of MSNs particles does not compromise their viability on H9c2 cells, and therefore they could potentially be used for biomedical purposes. Fourier-transform infrared, Raman, TGA/DSC, N2 adsorption-desorption, and TEM techniques were used to characterize the as-prepared materials. Confocal microscopy and flow cytometry analyses were carried out to measure the histograms of cell complexity and the half maximal inhibitory concentration, respectively. Reactive oxygen species generation was accessed using assays with MitoSOX and Amplex Red fluoroprobes.