Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39283167

RESUMEN

Defects in covalent organic frameworks (COFs) play a pivotal role in determining their properties and performance, significantly influencing interactions with adsorbates, guest molecules, and substrates as well as affecting charge carrier dynamics and light absorption characteristics. The present review focuses on the diverse array of techniques employed for characterizing and quantifying defects in COFs, addressing a critical need in the field of materials science. As will be discussed in this review, there are basically two types of defects referring either to missing organic moieties leaving free binding groups in the material or structural imperfections resulting in lower crystallinity, grain boundary defects, and incomplete stacking. The review summarizes an in-depth analysis of state-of-the-art characterization techniques, elucidating their specific strengths and limitations for each defect type. Key techniques examined in this review include powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), scanning tunneling microscope (STM), high resolution transmission electron microcoe (HRTEM), gas adsorption, acid-base titration, advanced electron microscopy methods, and computational calculations. We critically assess the capability of each technique to provide qualitative and quantitative information about COF defects, offering insights into their complementary nature and potential for synergistic use. The last section summarizes the main concepts of the review and provides perspectives for future development to overcome the existing challenges.

2.
ACS Appl Mater Interfaces ; 16(34): 45411-45421, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158685

RESUMEN

Physicochemical properties of polymers strongly depend on the arrangement and distribution of attached monomers. Templated polymerization using porous crystalline materials appears as a promising route to gain control on the process. Thus, we demonstrate here the potential of metal-organic frameworks as scaffolds with a versatile and very regular porosity, well adapted for the regioselective oxidative polymerization of pyrene. This photoresponsive monomer was first encapsulated within the one-dimensional (1D) microporosity of the robust zirconium(IV) carboxylate metal-organic framework (MOF) (MIL-140D) to, later, undergo in situ oxidative polymerization, enabling the growth of a highly selective polypyrene (PPyr) regioisomer over other potential polymer configurations. To confirm the polymerization and the geometry control of pyrene, the resulting composites were exhaustively characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), N2 sorption measurements, scanning transmission electron microscopy coupled with energy-dispersive X-ray (STEM-EDX) spectroscopy, and fluorescence spectroscopy. Among others, photoluminescence quenching and emission shift in the solid state demonstrated the presence of PPyr inside the MOF porosity. Furthermore, an in-depth joint analysis combining solid-state, magic-angle spinning (MAS) 1H and 13C NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS), and molecular simulations (grand canonical Monte Carlo (GCMC) and density functional theory (DFT)) allowed the elucidation of the spatial, host-guest interactions driving the polymerization reaction.

3.
Adv Sci (Weinh) ; : e2307106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021320

RESUMEN

About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.

4.
ACS Appl Mater Interfaces ; 16(29): 38153-38162, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39010305

RESUMEN

The utilization of photoelectrochemical cells (PEC) for converting solar energy into fuels (e.g., hydrogen) is a promising method for sustainable energy generation. We demonstrate a strategy to enhance the performance of PEC devices by integrating surface-functionalized zinc selenide (ZnSe) semiconductor nanocrystals (NCs) into porous polymeric carbon nitride (CN) matrices to form a uniformly distributed blend of NCs within the CN layer via electrophoretic deposition (EPD). The achieved type II heterojunction at the CN/NC interface exhibits intimate contact between the NCs and the CN backbone since it does not contain insulating binders. This configuration promotes efficient charge separation and suppresses carrier recombination. The reported CN/NC composite structure serves as a photoanode, demonstrating a photocurrent density of 160 ± 8 µA cm-2 at 1.23 V vs a reversible hydrogen electrode (RHE), 75% higher compared with a CN-based photoelectrode, for approximately 12 h. Spectral and photoelectrochemical analyses reveal extended photoresponse, reduced charge recombination, and successful charge transfer at the formed heterojunction; these properties result in enhanced PEC oxygen production activity with a Faradaic efficiency of 87%. The methodology allows the integration of high-quality colloidal NCs within porous CN-based photoelectrodes and provides numerous knobs for tuning the functionality of the composite systems, thus showing promise for achieving enhanced solar fuel production using PEC.

5.
Chemistry ; 30(38): e202401181, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38700479

RESUMEN

Defect-engineered metal-organic frameworks (MOFs) with outstanding structural and chemical features have become excellent candidates for specific separation applications. The introduction of structural defects in MOFs as an efficient approach to manipulate their functionality provides excellent opportunities for the preparation of MOF-based mixed matrix membranes (MMMs). However, the use of this strategy to adjust the properties and develop the separation performance of gas separation membranes is still in its early stages. Here, a novel defect-engineered MOF (quasi ZrFum or Q-ZrFum) was synthesized via a controlled thermal deligandation process and incorporated into a CO2-philic 6FDA-durene polyimide (PI) matrix to form Q-ZrFum loaded MMMs. Defect-engineered MOFs and fabricated MMMs were investigated regarding their characteristic properties and separation performance. The incorporation of defects into the MOF structure increases the pore size and provides unsaturated active metal sites that positively affect CO2 molecule transport. The interfacial compatibility between the Q-ZrFum particles and the PI matrix increases via the deligandation process, which improves the mechanical strength of Q-ZrFum loaded membranes. MMM containing 5 wt.% of defect-engineered Q-ZrFum exhibits excellent CO2 permeability of 1308 Barrer, which increased by 99 % compared to the pure PI membrane (656 Barrer) at a feed pressure of 2 bar. CO2/CH4 and CO2/N2 selectivity reached 44 and 26.6 which increased by about 70 and 16 %, respectively. This study emphasizes that defect-engineered MOFs can be promising candidates for use as fillers in the preparation of MMMs for the future development of membrane-based gas separation applications.

6.
Chemistry ; 30(37): e202400576, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38618910

RESUMEN

MXenes are two-dimensional nanomaterials having alternating sheets of one atom-thick early transition metal layer and one atom-thick carbide or nitride layer. The external surface contains termination groups, whose nature depends on the etching agent used in the preparation procedure from the MAX phase. The present concept proposes that, due to their composition, the metal-surface termination groups make MXenes particularly suited as heterogeneous catalysts for some reactions. This proposal comes from the consideration that early transition metal atoms bonded to hydroxyl and oxo groups are a general type of active sites in heterogeneous catalysis and that similar catalytic centers can also be present in the MXene structure. After having presented the concept, we have selected V2C Mxene as an example to illustrate its catalytic activity and to show how the catalytic performance varies when the surface groups are modified. As a test reaction, we selected the aerobic oxidation of indane to the corresponding indanol/indanone mixture using molecular oxygen as terminal oxidizing reagent. Two previously reported procedures to modify the surface groups, namely surface dehydroxylation by thermal treatment under diluted hydrogen flow and surface oxidation with ammonium persulfate to convert some surface groups into oxo groups were used, observing in both cases a decrease in the catalytic activity of V2C. Based on this, VIII/IV-OH are proposed as catalytic centers in this aerobic oxidation. Overall, the present concept shows the merits of MXenes in heterogeneous catalysis, based on their chemical composition and the surface functionality.

7.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38470804

RESUMEN

The quest for efficient catalysts based on abundant elements that can promote the selective CO2 hydrogenation to green methanol still continues. Most of the reported catalysts are based on Cu/ZnO supported in inorganic oxides, with not much progress with respect to the benchmark Cu/ZnO/Al2O3 catalyst. The use of carbon supports for Cu/ZnO particles is much less explored in spite of the favorable strong metal support interaction that these doped carbons can establish. This manuscript reports the preparation of a series of Cu-ZnO@(N)C samples consisting of Cu/ZnO particles embedded within a N-doped graphitic carbon with a wide range of Cu/Zn atomic ratio. The preparation procedure relies on the transformation of chitosan, a biomass waste, into N-doped graphitic carbon by pyrolysis, which establishes a strong interaction with Cu nanoparticles (NPs) formed simultaneously by Cu2+ salt reduction during the graphitization. Zn2+ ions are subsequently added to the Cu-graphene material by impregnation. All the Cu/ZnO@(N)C samples promote methanol formation in the CO2 hydrogenation at temperatures from 200 to 300 °C, with the temperature increasing CO2 conversion and decreasing methanol selectivity. The best performing Cu-ZnO@(N)C sample achieves at 300 °C a CO2 conversion of 23% and a methanol selectivity of 21% that is among the highest reported, particularly for a carbon-based support. DFT calculations indicate the role of pyridinic N doping atoms stabilizing the Cu/ZnO NPs and supporting the formate pathway as the most likely reaction mechanism.

8.
Chem Soc Rev ; 53(6): 3002-3035, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38353930

RESUMEN

Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.

9.
Angew Chem Int Ed Engl ; 63(3): e202311241, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37815860

RESUMEN

Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.

10.
J Phys Chem C Nanomater Interfaces ; 127(36): 17896-17905, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37736291

RESUMEN

New insights into the mechanism of the improved photo(electro)catalytic activity of graphene by heteroatom doping were explored by transient transmittance and reflectance spectroscopy of multi-layer N-doped graphene-based samples on a quartz substrate prepared by chitosan pyrolysis in the temperature range 900-1200 °C compared to an undoped graphene control. All samples had an expected photo-response: fast relaxation (within 1 ps) due to decreased plasmon damping and increased conductivity. However, the N-doped graphenes had an additional transient absorption signal of roughly 10 times lower intensity, with 10-50 ps formation time and the lifetime extending into the nanosecond domain. These photo-induced responses were recalculated as (complex) dielectric function changes and decomposed into Drude-Lorentz parameters to derive the origin of the opto(electronic) responses. Consequently, the long-lived responses were revealed to have different dielectric function spectra from those of the short-lived responses, which was ultimately attributed to electron trapping at doping centers. These trapped electrons are presumed to be responsible for the improved catalytic activity of multi-layer N-doped graphene-based films compared to that of multi-layer undoped graphene-based films.

11.
ACS Appl Mater Interfaces ; 15(30): 36434-36446, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477336

RESUMEN

Mixed-metal-organic frameworks (MMOFs) have emerged as promising photocatalyst candidates in multiple reactions. For instance, the doping of Zr-UiO-type MOFs with Ce atoms increases their photoactivity owing to a better overlap between the organic linker and Ce orbitals. However, it is not clear which is the ideal content of Ce to reach the optimal photocatalytic performance. Herein, a series of MMOFs isostructural to UiO-66 and with napthalene-2,6-dicarboxylate (NDC) as a linker were synthesized and characterized. The Ce content was varied from 0 to 100% and their corresponding structural, chemical, photodynamic, and photoresponse properties were investigated. Powder X-ray diffraction shows that when the content of Ce is 12% onward, in addition to the UiO-type structure, a second crystalline structure is cosynthesized (NDC-Ce). Steady-state and femtosecond (fs) to millisecond (ms) spectroscopy studies reveal the existence of two competing processes: a linker excimer formation and an ultrafast ligand-to-cluster charge transfer (LCCT) phenomenon from the organic linker to Zr/Ce metal clusters. The ultrafast (fs-regime) LCCT process leads to the formation of long-lived charge-separated states, which are more efficiently photoproduced when the content of Ce reaches 9%, suggesting that the related material would show the highest photoactivity. Photoaction spectroscopic measurements corroborate that the sample with 9% of Ce exhibits the maximum photocatalytic efficiency, which is reflected in a 20% increment in overall water splitting efficiency compared with the monometallic Zr-based MOF. The current study demonstrates the relationship between the photodynamical properties of the MMOFs and their photocatalytic performance, providing new findings and opening new ways for improving the design of new MOFs with enhanced photocatalytic activities.

12.
Chemistry ; 29(38): e202204016, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37130093

RESUMEN

This article highlights novel prospects for metal-organic frameworks (MOFs) in heterogeneous catalysis as having frustrated Lewis acid-base pairs (FLPs) or as bifunctional acid-base solid catalysts able to activate molecular hydrogen. Starting from the extensive application MOFs as Lewis acid and Lewis base catalysts, this article uses catalytic hydrogenation to briefly summarize the efforts made to heterogenize boron and amine in MOFs to mimic molecular FLP systems. The core of this concept is based on recent findings which demonstrate the ability of two commonly used MOFs, namely UiO-66 and MIL-101, to catalyze the selective hydrogenation of polar double X=Y bonds at moderate H2 pressures below 10 bar. The influence of electron-donating, the withdrawal of substituents on the linker, and the aniline poisoning effect highlight the significance of Lewis acid sites, while density-functional theory calculations indicate the heterolytic H-H bond cleavage at the MOF metal oxo clusters. It is expected that this new perspective on MOFs as solid FLP systems will spur further research to explore and define the potential of dual sites in the catalytic activation of small molecules.


Asunto(s)
Estructuras Metalorgánicas , Ácidos de Lewis , Aminas , Boro , Catálisis
13.
Phys Chem Chem Phys ; 25(15): 10759-10768, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010129

RESUMEN

Graphene has emerged as an exciting material because of its widespread applications resulting from its unique properties. Nano-scale engineering of graphene's structure is one of the most active research areas aimed at introducing functionalities to improve the performance or endow the graphene lattice with novel properties. In this regard, conversion between the hexagon and non-hexagon rings becomes an exciting tool to tune the electronic structure of graphene due to the distinct electronic structure and functionalities induced in graphene by each type of ring. This Density Functional Theory (DFT) study is an in-depth look at the adsorption-induced conversion of pentagon-octagon-pentagon rings to hexagon rings, and systematically investigates the possibility of the conversion of pentagon-octagon-pentagon rings to pentagon-heptagon pair rings. Moreover, the bottlenecks for these atomic-level conversions in the lattice structure of graphene and the influence of heteroatom doping on the mechanisms of these transformations are established.

14.
Chem Sci ; 14(13): 3451-3461, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006681

RESUMEN

The development of MOF-based efficient and reusable catalysts for hydrogen production under simulated sunlight irradiation, especially through overall water splitting, remains challenging. This is mainly due to either the inappropriate optical features or poor chemical stability of the given MOFs. Room temperature synthesis (RTS) of tetravalent MOFs is a promising strategy to design robust MOFs and their related (nano)composites. By employing these mild conditions, herein, we report for the first time that RTS leads to the efficient formation of highly redox active Ce(iv)-MOFs that are inaccessible at elevated temperatures. Consequently, not only highly crystalline Ce-UiO-66-NH2 is synthesized, but also many other derivatives and topologies (8 and 6-connected phases) without compromise in space-time yield. Their photocatalytic HER and OER activities under simulated sunlight irradiation are in good agreement with their energy level band diagrams: Ce-UiO-66-NH2 and Ce-UiO-66-NO2 are the most active photocatalysts for the HER and OER, respectively, with a higher activity than other metal-based UiO-type MOFs. Combining Ce-UiO-66-NH2 with supported Pt NPs results finally in one of the most active and reusable photocatalysts for overall water splitting into H2 and O2 under simulated sunlight irradiation, due to its efficient photoinduced charge separation evidenced by laser flash photolysis and photoluminescence spectroscopies.

15.
Small Methods ; 7(6): e2300063, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36840646

RESUMEN

A general methodology to prepare MXene quantum dots (MxQDs) with yields over 20% by liquid-phase laser ablation of the MAX phase is reported. Mechanical and thermal shock by 532 nm laser pulses (7 ns fwhp, 50 mJ × pulse-1 , 1 Hz pulse frequency) produces MAX etching and exfoliation to form MXene QDs, avoiding the use of HF. The process can be followed by absorption and emission spectroscopy and by dynamic laser scattering and it appears to be general, being applied to Ti3 AlC2 , Ti2 AlC, Nb2 AlC, and V2 AlC MAX phases. Density functional theory calculations indicate that, depending on the surface terminal groups, the diminution of the MXene size to the nanometric scale makes it possible to control the band gap of the MXene. The photocatalytic activity of these MXene QDs for hydrogen evolution has been observed, reaching an H2 production for the most efficient Ti3 C2 QDs as high as 2.02 mmol × g-1 × h-1 .

16.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770519

RESUMEN

A porphyrin-based covalent organic framework (COF), namely Porph-UOZ-COF (UOZ stands for the University of Zabol), has been designed and prepared via the condensation reaction of 5,10,15,20-tetrakis-(3,4-dihydroxyphenyl)porphyrin (DHPP) with 1,4-benzenediboronic acid (DBBA), under the solvothermal condition. The solid was characterized by spectroscopic, microscopic, and powder X-ray diffraction techniques. The resultant multifunctional COF revealed an outstanding performance in catalyzing a one-pot tandem selective benzylic C-H photooxygenation/Knoevenagel condensation reaction in the absence of additives or metals under visible-LED-light irradiation. Notably, the catalytic activity of the COF was superior to individual organic counterparts and the COF was both stable and reusable for four consecutive runs. The present approach illustrates the potential of COFs as promising metal-free (photo) catalysts for the development of tandem reactions.

17.
Chemistry ; 29(1): e202202625, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36152311

RESUMEN

Hydrogenation of multiple bonds are among the most general and important organic reactions. Typical heterogeneous catalysts are based on transition metal nanoparticles, including noble metals. Data are presented here showing that metal nodes of MIL-101(Cr) and UiO-66 in the absence of occluded metal nanoparticles can promote hydrogenation of polarized X=Y double bonds of nitro and carbonyl groups. The catalytic activity is a function of the composition of the metal node and the organic linker. It is proposed that the reaction mechanism is based on the operation of frustrated Lewis acid/base pairs.

18.
Adv Mater ; 35(24): e2209475, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36563668

RESUMEN

Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.

19.
Chem Rev ; 123(1): 445-490, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36503233

RESUMEN

Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.


Asunto(s)
Estructuras Metalorgánicas , Luz Solar , Agua , Procesos Fotoquímicos , Luz
20.
Angew Chem Int Ed Engl ; 62(9): e202214707, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36468543

RESUMEN

Transition metal complexes are well-known homogeneous electrocatalysts. In this regard, metal-organic frameworks (MOFs) can be considered as an ensemble of transition metal complexes ordered in a periodic arrangement. In addition, MOFs have several additional positive structural features that make them suitable for electrocatalysis, including large surface area, high porosity, and high content of accessible transition metal with exchangeable coordination positions. The present review describes the current state in the use of MOFs as electrocatalysts, both as host of electroactive guests and their direct electrocatalytic activity, particularly in the case of bimetallic MOFs. The field of MOF-derived materials is purposely not covered, focusing on the direct use of MOFs or its composites as electrocatalysts. Special attention has been paid to present strategies to overcome their poor electrical conductivity and limited stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA