Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(1): e0152123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38084944

RESUMEN

Cyclodextrinases are carbohydrate-active enzymes involved in the linearization of circular amylose oligosaccharides. Primarily thought to function as part of starch metabolism, there have been previous reports of bacterial cyclodextrinases also having additional enzymatic activities on linear malto-oligosaccharides. This substrate class also includes environmentally rare α-diglucosides such as kojibiose (α-1,2), nigerose (α-1,3), and isomaltose (α-1,6), all of which have valuable properties as prebiotics or low-glycemic index sweeteners. Previous genome sequencing of three Cellvibrio japonicus strains adapted to utilize these α-diglucosides identified multiple, but uncharacterized, mutations in each strain. One of the mutations identified was in the amy13E gene, which was annotated to encode a neopullulanase. In this report, we functionally characterized this gene and determined that it in fact encodes a cyclodextrinase with additional activities on α-diglucosides. Deletion analysis of amy13E found that this gene was essential for kojibiose and isomaltose metabolism in C. japonicus. Interestingly, a Δamy13E mutant was not deficient for cyclodextrin or pullulan utilization in C. japonicus; however, heterologous expression of the gene in E. coli was sufficient for cyclodextrin-dependent growth. Biochemical analyses found that CjAmy13E cleaved multiple substrates but preferred cyclodextrins and maltose, but had no activity on pullulan. Our characterization of the CjAmy13E cyclodextrinase is useful for refining functional enzyme predictions in related bacteria and for engineering enzymes for biotechnology or biomedical applications.IMPORTANCEUnderstanding the bacterial metabolism of cyclodextrins and rare α-diglucosides is increasingly important, as these sugars are becoming prevalent in the foods, supplements, and medicines humans consume that subsequently feed the human gut microbiome. Our analysis of a cyclomaltodextrinase with an expanded substrate range is significant because it broadens the potential applications of the GH13 family of carbohydrate active enzymes (CAZymes) in biotechnology and biomedicine. Specifically, this study provides a workflow for the discovery and characterization of novel activities in bacteria that possess a high number of CAZymes that otherwise would be missed due to complications with functional redundancy. Furthermore, this study provides a model from which predictions can be made why certain bacteria in crowded niches are able to robustly utilize rare carbon sources, possibly to gain a competitive growth advantage.


Asunto(s)
Cellvibrio , Ciclodextrinas , Humanos , Isomaltosa/metabolismo , Escherichia coli/genética , Glicósido Hidrolasas/metabolismo , Oligosacáridos/metabolismo , Ciclodextrinas/metabolismo
2.
Microbiol Spectr ; 11(6): e0245723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37800973

RESUMEN

IMPORTANCE: Understanding the bacterial metabolism of starch is important as this polysaccharide is a ubiquitous ingredient in foods, supplements, and medicines, all of which influence gut microbiome composition and health. Our RNAseq and growth data set provides a valuable resource to those who want to better understand the regulation of starch utilization in Gram-negative bacteria. These data are also useful as they provide an example of how to approach studying a starch-utilizing bacterium that has many putative amylases by coupling transcriptomic data with growth assays to overcome the potential challenges of functional redundancy. The RNAseq data can also be used as a part of larger meta-analyses to compare how C. japonicus regulates carbohydrate active enzymes, or how this bacterium compares to gut microbiome constituents in terms of starch utilization potential.


Asunto(s)
Cellvibrio , Almidón , Almidón/metabolismo , Polisacáridos/metabolismo , Cellvibrio/genética , Cellvibrio/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo
3.
J Microbiol Methods ; 190: 106337, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34571109

RESUMEN

We describe a method for containing insoluble particulates for use as substrates in either bacterial growth or enzyme assays. This method was designed for high-throughput screening of environmental or engineered bacteria. Benchmarking this method with several model bacteria uncovered phenotypes not observable with the particulate substrates alone.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Monitoreo del Ambiente/métodos , Pruebas de Enzimas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Agar , Celulosa
4.
Appl Microbiol Biotechnol ; 105(10): 4033-4052, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33961116

RESUMEN

In a competitive microbial environment, nutrient acquisition is a major contributor to the survival of any individual bacterial species, and the ability to access uncommon energy sources can provide a fitness advantage. One set of soluble carbohydrates that have attracted increased attention for use in biotechnology and biomedicine is the α-diglucosides. Maltose is the most well-studied member of this class; however, the remaining four less common α-diglucosides (trehalose, kojibiose, nigerose, and isomaltose) are increasingly used in processed food and fermented beverages. The consumption of trehalose has recently been shown to be a contributing factor in gut microbiome disease as certain pathogens are using α-diglucosides to outcompete native gut flora. Kojibiose and nigerose have also been examined as potential prebiotics and alternative sweeteners for a variety of foods. Compared to the study of maltose metabolism, our understanding of the synthesis and degradation of uncommon α-diglucosides is lacking, and several fundamental questions remain unanswered, particularly with regard to the regulation of bacterial metabolism for α-diglucosides. Therefore, this minireview attempts to provide a focused analysis of uncommon α-diglucoside metabolism in bacteria and suggests some future directions for this research area that could potentially accelerate biotechnology and biomedicine developments. KEY POINTS: • α-diglucosides are increasingly important but understudied bacterial metabolites. • Kinetically superior α-diglucoside enzymes require few amino acid substitutions. • In vivo studies are required to realize the biotechnology potential of α-diglucosides.


Asunto(s)
Isomaltosa , Maltosa , Bacterias , Biotecnología , Trehalosa
5.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32917758

RESUMEN

The α-diglucoside trehalose has historically been known as a component of the bacterial stress response, though it more recently has been studied for its relevance in human gut health and biotechnology development. The utilization of trehalose as a nutrient source by bacteria relies on carbohydrate-active enzymes, specifically those of the glycoside hydrolase family 37 (GH37), to degrade the disaccharide into substituent glucose moieties for entry into metabolism. Environmental bacteria using oligosaccharides for nutrients often possess multiple carbohydrate-active enzymes predicted to have the same biochemical activity and therefore are thought to be functionally redundant. In this study, we characterized trehalose degradation by the biotechnologically important saprophytic bacterium Cellvibrio japonicus This bacterium possesses two predicted α-α-trehalase genes, tre37A and tre37B, and our investigation using mutational analysis found that only the former is essential for trehalose utilization by C. japonicus Heterologous expression experiments found that only the expression of the C. japonicus tre37A gene in an Escherichia colitreA mutant strain allowed for full utilization of trehalose. Biochemical characterization of C. japonicus GH37 activity determined that the tre37A gene product is solely responsible for cleaving trehalose and is an acidic α-α-trehalase. Bioinformatic and mutational analyses indicate that Tre37A directly cleaves trehalose to glucose in the periplasm, as C. japonicus does not possess a phosphotransferase system. This study facilitates the development of a comprehensive metabolic model for α-linked disaccharides in C. japonicus and more broadly expands our understanding of the strategies that saprophytic bacteria employ to capture diverse carbohydrates from the environment.IMPORTANCE The metabolism of trehalose is becoming increasingly important due to the inclusion of this α-diglucoside in a number of foods and its prevalence in the environment. Bacteria able to utilize trehalose in the human gut possess a competitive advantage, as do saprophytic microbes in terrestrial environments. While the biochemical mechanism of trehalose degradation is well understood, what is less clear is how bacteria acquire this metabolite from the environment. The significance of this report is that by using the model saprophyte Cellvibrio japonicus, we were able to functionally characterize the two predicted trehalase enzymes that the bacterium possesses and determined that the two enzymes are not equivalent and are not functionally redundant. The results and approaches used to understand the complex physiology of α-diglucoside metabolism from this study can be applied broadly to other polysaccharide-degrading bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Cellvibrio/metabolismo , Trehalasa/genética , Trehalosa/metabolismo , Proteínas Bacterianas/metabolismo , Cellvibrio/enzimología , Expresión Génica , Trehalasa/metabolismo
6.
Microbiol Resour Announc ; 8(44)2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672746

RESUMEN

Cellvibrio japonicus is a saprophytic bacterium that has been studied for its substantial carbohydrate degradation capability. We announce the genome sequences of three strains with improved growth characteristics when utilizing α-diglucosides. These data provide additional insight into the metabolic flexibility of a biotechnologically relevant bacterium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA